75 research outputs found

    Pregnancy outcome following gestational exposure to azithromycin

    Get PDF
    BACKGROUND: Azithromycin is an azalide antibiotic with an extensive range of indications and has become a common treatment option due to its convenient dosing regimen and therapeutic advantages. Human studies addressing gestational use of azithromycin have primarily focused on antibiotic efficacy rather than fetal safety. Our primary objective was to evaluate the possibility of teratogenic risk following gestational exposure to azithromycin. METHODS: There were 3 groups of pregnant women enrolled in our study: 1) women who took azithromycin. 2) women exposed to non-teratogenic antibiotics for similar indications, and 3) women exposed to non-teratogenic agents. They were matched for gestational age at time of call, maternal age, cigarette and alcohol consumption. Rates of major malformations and other endpoints of interest were compared among the three groups. RESULTS: Pregnancy outcome of 123 women in each group was ascertained. There were no statistically significant differences among the three groups in the rates of major malformations; 3.4% (exposed) versus 2.3% (disease matched) and 3.4% (non teratogen) or any other endpoints that were examined. In the azithromycin group, 88 (71.6%) women took the drug during the first trimester CONCLUSION: Results suggest that gestational exposure to azithromycin is not associated with an increase in the rate of major malformations above the baseline of 1–3%. Our data adds to previous research showing that macrolide antibiotics, as a group, are generally safe in pregnancy and provides an evidence-based option for health professionals caring for populations with chlamydia

    LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical maps are the substrate of genome sequencing and map-based cloning and their construction relies on the accurate assembly of BAC clones into large contigs that are then anchored to genetic maps with molecular markers. High Information Content Fingerprinting has become the method of choice for large and repetitive genomes such as those of maize, barley, and wheat. However, the high level of repeated DNA present in these genomes requires the application of very stringent criteria to ensure a reliable assembly with the FingerPrinted Contig (FPC) software, which often results in short contig lengths (of 3-5 clones before merging) as well as an unreliable assembly in some difficult regions. Difficulties can originate from a non-linear topological structure of clone overlaps, low power of clone ordering algorithms, and the absence of tools to identify sources of gaps in Minimal Tiling Paths (MTPs).</p> <p>Results</p> <p>To address these problems, we propose a novel approach that: (i) reduces the rate of false connections and Q-clones by using a new cutoff calculation method; (ii) obtains reliable clusters robust to the exclusion of single clone or clone overlap; (iii) explores the topological contig structure by considering contigs as networks of clones connected by significant overlaps; (iv) performs iterative clone clustering combined with ordering and order verification using re-sampling methods; and (v) uses global optimization methods for clone ordering and Band Map construction. The elements of this new analytical framework called Linear Topological Contig (LTC) were applied on datasets used previously for the construction of the physical map of wheat chromosome 3B with FPC. The performance of LTC vs. FPC was compared also on the simulated BAC libraries based on the known genome sequences for chromosome 1 of rice and chromosome 1 of maize.</p> <p>Conclusions</p> <p>The results show that compared to other methods, LTC enables the construction of highly reliable and longer contigs (5-12 clones before merging), the detection of "weak" connections in contigs and their "repair", and the elongation of contigs obtained by other assembly methods.</p

    Genomic tools development for Aquilegia: construction of a BAC-based physical map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Aquilegia</it>, consisting of approximately 70 taxa, is a member of the basal eudicot lineage, Ranuculales, which is evolutionarily intermediate between monocots and core eudicots, and represents a relatively unstudied clade in the angiosperm phylogenetic tree that bridges the gap between these two major plant groups. <it>Aquilegia </it>species are closely related and their distribution covers highly diverse habitats. These provide rich resources to better understand the genetic basis of adaptation to different pollinators and habitats that in turn leads to rapid speciation. To gain insights into the genome structure and facilitate gene identification, comparative genomics and whole-genome shotgun sequencing assembly, BAC-based genomics resources are of crucial importance.</p> <p>Results</p> <p>BAC-based genomic resources, including two BAC libraries, a physical map with anchored markers and BAC end sequences, were established from <it>A. formosa</it>. The physical map was composed of a total of 50,155 BAC clones in 832 contigs and 3939 singletons, covering 21X genome equivalents. These contigs spanned a physical length of 689.8 Mb (~2.3X of the genome) suggesting the complex heterozygosity of the genome. A set of 197 markers was developed from ESTs induced by drought-stress, or involved in anthocyanin biosynthesis or floral development, and was integrated into the physical map. Among these were 87 genetically mapped markers that anchored 54 contigs, spanning 76.4 Mb (25.5%) across the genome. Analysis of a selection of 12,086 BAC end sequences (BESs) from the minimal tiling path (MTP) allowed a preview of the <it>Aquilegia </it>genome organization, including identification of transposable elements, simple sequence repeats and gene content. Common repetitive elements previously reported in both monocots and core eudicots were identified in <it>Aquilegia </it>suggesting the value of this genome in connecting the two major plant clades. Comparison with sequenced plant genomes indicated a higher similarity to grapevine (<it>Vitis vinifera</it>) than to rice and <it>Arabidopsis </it>in the transcriptomes.</p> <p>Conclusions</p> <p>The <it>A. formosa </it>BAC-based genomic resources provide valuable tools to study <it>Aquilegia </it>genome. Further integration of other existing genomics resources, such as ESTs, into the physical map should enable better understanding of the molecular mechanisms underlying adaptive radiation and elaboration of floral morphology.</p

    Discovery of X-Ray Polarization from the Black Hole Transient Swift J1727.8−1613

    Get PDF
    \ua9 2023. The Author(s). Published by the American Astronomical Society.We report the first detection of the X-ray polarization of the bright transient Swift J1727.8−1613 with the Imaging X-ray Polarimetry Explorer. The observation was performed at the beginning of the 2023 discovery outburst, when the source resided in the bright hard state. We find a time- and energy-averaged polarization degree of 4.1% \ub1 0.2% and a polarization angle of 2.\ub02 \ub1 1.\ub03 (errors at 68% confidence level; this translates to ∼20σ significance of the polarization detection). This finding suggests that the hot corona emitting the bulk of the detected X-rays is elongated, rather than spherical. The X-ray polarization angle is consistent with that found in submillimeter wavelengths. Since the submillimeter polarization was found to be aligned with the jet direction in other X-ray binaries, this indicates that the corona is elongated orthogonal to the jet

    Host genetic signatures of susceptibility to fungal disease

    Get PDF
    Our relative inability to predict the development of fungal disease and its clinical outcome raises fundamental questions about its actual pathogenesis. Several clinical risk factors are described to predispose to fungal disease, particularly in immunocompromised and severely ill patients. However, these alone do not entirely explain why, under comparable clinical conditions, only some patients develop infection. Recent clinical and epidemiological studies have reported an expanding number of monogenic defects and common polymorphisms associated with fungal disease. By directly implicating genetic variation in the functional regulation of immune mediators and interacting pathways, these studies have provided critical insights into the human immunobiology of fungal disease. Most of the common genetic defects reported were described or suggested to impair fungal recognition by the innate immune system. Here, we review common genetic variation in pattern recognition receptors and its impact on the immune response against the two major fungal pathogens Candida albicans and Aspergillus fumigatus. In addition, we discuss potential strategies and opportunities for the clinical translation of genetic information in the field of medical mycology. These approaches are expected to transfigure current clinical practice by unleashing an unprecedented ability to personalize prophylaxis, therapy and monitoring for fungal disease.This work was supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), the Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 to AC, and SFRH/BPD/96176/2013 to CC), the Institut Mérieux (Mérieux Research Grant 2017 to CC), and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID Research Grant 2017 to AC)

    Azithromycin-chloroquine and the intermittent preventive treatment of malaria in pregnancy

    Get PDF
    In the high malaria-transmission settings of sub-Saharan Africa, malaria in pregnancy is an important cause of maternal, perinatal and neonatal morbidity. Intermittent preventive treatment of malaria in pregnancy (IPTp) with sulphadoxine-pyrimethamine (SP) reduces the incidence of low birth-weight, pre-term delivery, intrauterine growth-retardation and maternal anaemia. However, the public health benefits of IPTp are declining due to SP resistance. The combination of azithromycin and chloroquine is a potential alternative to SP for IPTp. This review summarizes key in vitro and in vivo evidence of azithromycin and chloroquine activity against Plasmodium falciparum and Plasmodium vivax, as well as the anticipated secondary benefits that may result from their combined use in IPTp, including the cure and prevention of many sexually transmitted diseases. Drug costs and the necessity for external financing are discussed along with a range of issues related to drug resistance and surveillance. Several scientific and programmatic questions of interest to policymakers and programme managers are also presented that would need to be addressed before azithromycin-chloroquine could be adopted for use in IPTp

    Human malarial disease: a consequence of inflammatory cytokine release

    Get PDF
    Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    The risk factors and predictive factors for anastomotic leakage after resection for colorectal cancer: reappraisal of the literature

    Get PDF
    Anastomotic leakage is a serious complication that can occur after colorectal surgery. Several risk factors for anastomotic leakage have been reported based on the findings of prospective and retrospective studies, including patient characteristics, the use of neoadjuvant therapy, the tumor location, intraoperative events, etc. However, as these risk factors affect each other, the statistical results have differed in each study. In addition, differences in surgical methods, including laparoscopy versus laparotomy or stapling anastomosis versus handsewn anastomosis, may influence the incidence of anastomotic leakage. This mini-review summarizes the results of reported papers to clarify the current evidence of risk factors for anastomotic leakage
    corecore