45 research outputs found

    Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.

    Get PDF
    Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing

    Longitudinal Replication Studies of GWAS Risk SNPs Influencing Body Mass Index over the Course of Childhood and Adulthood

    Get PDF
    Genome-wide association studies (GWAS) have identified multiple common variants associated with body mass index (BMI). In this study, we tested 23 genotyped GWAS-significant SNPs (p-value<5*10-8) for longitudinal associations with BMI during childhood (3–17 years) and adulthood (18–45 years) for 658 subjects. We also proposed a heuristic forward search for the best joint effect model to explain the longitudinal BMI variation. After using false discovery rate (FDR) to adjust for multiple tests, childhood and adulthood BMI were found to be significantly associated with six SNPs each (q-value<0.05), with one SNP associated with both BMI measurements: KCTD15 rs29941 (q-value<7.6*10-4). These 12 SNPs are located at or near genes either expressed in the brain (BDNF, KCTD15, TMEM18, MTCH2, and FTO) or implicated in cell apoptosis and proliferation (FAIM2, MAP2K5, and TFAP2B). The longitudinal effects of FAIM2 rs7138803 on childhood BMI and MAP2K5 rs2241423 on adulthood BMI decreased as age increased (q-value<0.05). The FTO candidate SNPs, rs6499640 at the 5 ′-end and rs1121980 and rs8050136 downstream, were associated with childhood and adulthood BMI, respectively, and the risk effects of rs6499640 and rs1121980 increased as birth weight decreased. The best joint effect model for childhood and adulthood BMI contained 14 and 15 SNPs each, with 11 in common, and the percentage of explained variance increased from 0.17% and 9.0*10−6% to 2.22% and 2.71%, respectively. In summary, this study evidenced the presence of long-term major effects of genes on obesity development, implicated in pathways related to neural development and cell metabolism, and different sets of genes associated with childhood and adulthood BMI, respectively. The gene effects can vary with age and be modified by prenatal development. The best joint effect model indicated that multiple variants with effects that are weak or absent alone can nevertheless jointly exert a large longitudinal effect on BMI

    Sp6 and Sp8 transcription factors control AER formation and dorsal-ventral patterning in limb development

    Get PDF
    The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6-/-;Sp8+/-) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Mapping the Paediatric Quality of Life Inventory (PedsQL™) Generic Core Scales onto the Child Health Utility Index–9 Dimension (CHU-9D) Score for Economic Evaluation in Children

    Get PDF
    Background: The Paediatric Quality of Life Inventory (PedsQL™) questionnaire is a widely used, generic instrument designed for measuring health-related quality of life (HRQoL); however, it is not preference-based and therefore not suitable for cost–utility analysis. The Child Health Utility Index–9 Dimension (CHU-9D), however, is a preference-based instrument that has been primarily developed to support cost–utility analysis. Objective: This paper presents a method for estimating CHU-9D index scores from responses to the PedsQL™ using data from a randomised controlled trial of prednisolone therapy for treatment of childhood corticosteroid-sensitive nephrotic syndrome. Methods: HRQoL data were collected from children at randomisation, week 16, and months 12, 18, 24, 36 and 48. Observations on children aged 5 years and older were pooled across all data collection timepoints and were then randomised into an estimation (n = 279) and validation (n = 284) sample. A number of models were developed using the estimation data before internal validation. The best model was chosen using multi-stage selection criteria. Results: Most of the models developed accurately predicted the CHU-9D mean index score. The best performing model was a generalised linear model (mean absolute error = 0.0408; mean square error = 0.0035). The proportion of index scores deviating from the observed scores by 13 years) or patient groups with particularly poor quality of life. ISRCTN Registry No: 1664524

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Genetic and epigenetic profiling of CLL disease progression reveals limited somatic evolution and suggests a relationship to memory-cell development.

    No full text
    We examined genetic and epigenetic changes that occur during disease progression from indolent to aggressive forms of chronic lymphocytic leukemia (CLL) using serial samples from 27 patients. Analysis of DNA mutations grouped the leukemia cases into three categories: evolving (26%), expanding (26%) and static (47%). Thus, approximately three-quarters of the CLL cases had little to no genetic subclonal evolution. However, we identified significant recurrent DNA methylation changes during progression at 4752 CpGs enriched for regions near Polycomb 2 repressive complex (PRC2) targets. Progression-associated CpGs near the PRC2 targets undergo methylation changes in the same direction during disease progression as during normal development from naive to memory B cells. Our study shows that CLL progression does not typically occur via subclonal evolution, but that certain CpG sites undergo recurrent methylation changes. Our results suggest CLL progression may involve developmental processes shared in common with the generation of normal memory B cells
    corecore