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Abstract 

Background The Paediatric Quality of Life Inventory (PedsQL
TM

) questionnaire is a widely used, 

generic instrument designed for measuring health-related quality of life (HRQoL); however, it is not 

preference-based and therefore not suitable for cost–utility analysis. The Child Health Utility Index–9 

Dimension (CHU-9D), however, is a preference-based instrument that has been primarily developed 

to support cost–utility analysis. 

 

Objective This paper presents a method for estimating CHU-9D index scores from responses to the 

PedsQL
TM 

using data from a randomised controlled trial of prednisolone therapy for treatment of 

childhood corticosteroidsensitive nephrotic syndrome. 

 

Methods HRQoL data were collected from children at randomisation, week 16, and months 12, 18, 24, 

36 and 48. Observations on children aged 5 years and older were pooled across all data collection 

timepoints and were then randomised into an estimation (n = 279) and validation (n = 284) sample. 

A number of models were developed using the estimation data before internal validation. The best 

model was chosen using multi-stage selection criteria. Results Most of the models developed accurately 

predicted the CHU-9D mean index score. The best performing model was a generalised linear 

model (mean absolute error = 0.0408; mean square error = 0.0035). The proportion of index 

scores deviating from the observed scores by< 0.03 was 53%. 

Conclusions The mapping algorithm provides an empirical tool for estimating CHU-9D index scores 

and for conducting cost–utility analyses within clinical studies that have only collected PedsQL
TM

 

data. It is valid for children aged 5 years or older. Caution should be exercised when using this with 

children younger than 5 years, older adolescents (> 13 years) or patient groups with particularly poor 

quality of life. 

 

 



  

 

 

 

 

 

 

 

 

 

Key Points 

 

The Paediatric Quality of Life Inventory (PedsQL
TM

) is a widely used tool/questionnaire for measuring 

health-related quality of life in children and adolescents but it is unsuitable for calculating quality-

adjusted life-years (QALYs), which are often required for use in economic evaluation. 

The algorithm produced in this study now permits the estimation of CHU-9D scores from PedsQL
TM

 

responses in children as young as 5 years 

1.Introduction 

Cost-effectiveness analysis is a comparative assessment of both costs and outcomes linked to healthcare 

interventions. Evidence of healthcare benefits are often synthesised from clinical trials, public health 

studies or from other forms of health research. These health benefits are increasingly captured as 

health-related quality of life (HRQoL) using either ‘condition-specific’ or ‘generic’ survey instruments. 

Condition-specific instruments focus on health dimensions relevant to a particular disease whereas generic 

instruments assess core dimensions of health that are relevant to all conditions [1]. Clinical trials tend to 

use condition-specific instruments as a primary or secondary measure of benefit because these 

instruments focus on the specific domains of quality of life affected by a condition and are therefore 

sensitive to treatment effect in these domains. On the other hand, generic instruments measure a 

broader HRQoL construct [2]; therefore, they allow comparisons of treatment benefit across a wide 

range of interventions across multiple conditions. 

Generic instruments can be further classed as either ‘preference’ or ‘non-preference-based’. 

Preference-based generic instruments attach weights to the domains of health to reflect a stronger 

preference for one aspect of HRQoL over another, in order to generate a single index/score of HRQoL 

(also termed a utility score) [3]. In contrast, most non-preference-based instruments simply sum the 

scores from all the health domains and thus assume an equal weighting. Some non-preference-

based instruments may apply complex weighting systems, but these weights are not preference-based 

[4]. For cost–utility analysis, preference based generic instruments are required to measure utility-

based quality-of-life scores and, unfortunately, the majority of generic instruments used in clinical trials 

are non-preference-based [5] and are consequently of limited use for measuring and comparing the cost 

effectiveness of diverse interventions on a common scale [6, 7]. 

To capture both length and quality of life from treatment, quality-adjusted life-years (QALYs) are 

often applied [8, 9], whereby cost effectiveness is expressed as cost per additional QALY gained. 

Within paediatric medicine, however, most HRQoL instruments developed for children and adolescents 

are non-preference-based [10] and therefore cannot be used for economic evaluation [11] where 

QALYs are the desired outcome. A prediction algorithm/mapping function can, however, be used to 

predict utility scores from responses to a non-preferencebased instrument [5]. This algorithm reflects the 

statistical relationship between the preference and the non-preference-based instrument, using 

 



  

responses from a prior population whose responses to both instruments have been collected. 

The Paediatric Quality of Life Inventory (PedsQL
TM

) is a generic non-preference-based instrument that 

provides a modular approach for measuring HRQoL in healthy children and adolescents and those with 

acute or chronic health conditions. PedsQL
TM

 is commonly used due to its simple computational system 

and its validity for a wide age range of 2- to 18-year-olds [12]. In a review of paediatric qualityof-life 

measures, PedsQL
TM

 fulfilled basic psychometric criteria, was suitable for completion in the clinic and 

could be recommended for use in clinical trials [13]. It also has the advantage of having both proxy and 

patient-completed versions, and has additional modules measuring some disease-specific quality of 

life. A viable preference-based alternative to the PedsQL
TM

 is the Child Health Utility–9 Dimension 

(CHU-9D), which has been specifically developed for economic evaluation in children aged 5 years and 

older [14]. In situations where only PedsQL
TM

 data are available, CHU-9D utility scores can be predicted 

from the PedsQL
TM

 using a mapping algorithm. Only one study has mapped the PedsQL
TM

 onto CHU-9D 

[15], in which the Short Form 15-item (SF-15) version of the PedsQL
TM

 was used in place of the 

standard 23-item questionnaire. Data for that study [15] were obtained from Australian older 

adolescents only (15–17 years old), and the CHU-9D responses were scored using the Australian 

value set [16]. 

This study mapped responses from the 23-item generic core scale version of the PedsQL
TM

 onto CHU-

9D index scores in children aged 5–13 years who were participants in a randomised controlled 

trial (RCT) of different corticosteroid regimens in childhood corticosteroid-sensitive nephrotic 

syndrome [17 

2 Methods  

2.1 Data 

The data for this study were obtained from the PREDNOS (PREDnisolone in NephrOtic Syndrome) 

study, a UK-based double-blind placebo-controlled RCT designed to evaluate the clinical and cost 

effectiveness of an extended corticosteroid (prednisolone) treatment over 16 weeks compared with the 

standard 8-week treatment regimen in children with corticosteroid-sensitive nephrotic syndrome. 

Participants were recruited from general hospitals and tertiary paediatric nephrology units across 

the UK, and were followed up for at least 24 months up to a maximum of 48 months; the study 

closed when the last participant had completed 24 months of follow-up. 

 

In accordance with the study protocol, the proxy-reported version of the PedsQL
TM

 and the CHU-9D 

were used to collect HRQoL data at baseline, week 16, and at months 12, 24, 36 and 48 for children in 

both study arms. PedsQL
TM

 was completed for children across all age groups (2–18 years) using the 

appropriate age-specific module, whilst the CHU-9D was completed for children who were 5 years 

and older [17]. In order to optimise the sample size, data on children who had completed both 

instruments across all timepoints were considered relevant for the mapping exercise. The sample was 

split into either an estimation or a validation sample. The estimation sample was used to develop 

the models while the validation sample was used for internal cross-validation of the mapping models. 

 



  

Two approaches were available for selecting the estimation and the validation sample. The first was 

to randomise children at baseline into either the estimation or validation sample, and then account for 

the panel nature of the data in the regression equations. This approach results in a dataset that ensures 

all observations from individual children are either contained within the estimation or the validation 

sample and never within both. This, however, also results in the variation being reduced, as fewer 

children are contained within each sample. Therefore, an alternative approach was chosen for this 

mapping study whereby the entire sample of time-variant observations were randomised into either the 

estimation or the validation sample; and a clustering variable was included to account for having 

multiple observations from the same child. A preliminary analysis was conducted to explore the 

impact on the predicted CHU-9D index score of having the same participants but different observations 

in the estimation and validation sample (see Electronic Supplementary Material Appendix). 

Randomising the entire sample into an estimation and a validation sample limits the issue of overfit-

ting when selecting the final model; a 3:1 split was used [18]. Of the entire sample, 50% was 

randomised to the validation sample in an attempt to rigorously avoid over-fitting. The estimation and 

validation samples contained only observations with valid CHU-9D and PedsQL
TM

 index scores, 

after excluding missing items. 

2.2 Outcome Measures 

The CHU-9D was initially designed for children aged 7–11 years; however, further research has now 

extended its use to children as young as 5 years [19–21] and to adolescents up to age 17 years [22]. 

The use of the instrument in 5-year-olds is currently being trialled [23]. The self- and proxy-reported 

versions of the CHU-9D questionnaire each consist of nine dimensions: sad, worried, annoyed, tired, 

sleep, pain, school, routine, and activity. Each dimension contains five severity levels, resulting in a 

possible 1953125 unique health states associated with the measure. Responses from the CHU-9D 

instrument were transformed into quality-of-life (utility) weights derived from a UK general 

population sample using an algorithm developed by Stevens [14]. Applying these weights produces a 

utility value set of between 0.33 (worst health state) and 1 (best health state), and a utility score of 

zero denotes death on the CHU-9D scale. 

The PedsQL
TM

 generic core scale is a well-validated non-preference-based measure developed for 

toddlers, school-age children and adolescents. The self-reported version of the questionnaire has 

been validated in 5- to 18-year-olds while the parent- or proxy-reported version is valid for use in 2- to 

18-year-olds [12, 24]. Both versions of the instrument have the same number of items across the four 

subscales or domains of health for each age-specific module: toddlers (2–4 years), young children (5–7 

years), older children (8–12 years) and adolescents (13–18 years). The number of items within the 

health domain varies for some modules. The physical functioning (PF) domain has eight items, and 

both the emotional functioning (EF) and the social functioning (SF) domains have five items each. 

School functioning (FU) has five items for all age groups except toddlers where there are three items. 

Similar to the CHU-9D instrument, responses to each of the 23 items are on a 5-point scale of 

increasing severity from 0 to 4: never a problem; almost never a problem; sometimes a problem; often 

a problem; and almost always a problem. Responses are then reverse scored and linearly transformed 

(0 = 100, 1 = 75, 2 = 50, 3 = 25 and 4 = 0). The total PedsQL
TM

 score is the mean of the transformed 

score from all items answered. The total score is expressed on a 0 to 100 scale with 100 reflecting best 

possible health state  

2.3 Analysis 

Characteristics of participants in the study were summarised as means and standard deviation (SD) 



  

for continuous variables, and frequency (%) for categorical variables. The conceptual overlap between 

the two instruments across the whole sample was explored using Spearman correlation coefficients. 

The prediction mapping exercise regressed the CHU-9D utility scores (dependent variable) against the 

PedsQL
TM

 total, subscale or item scores (independent variables) to generate an algorithm that could 

then be subsequently used to predict the CHU-9D values. In order to select the model with a good 

prediction accuracy, three ‘functional forms’ or estimators were explored since it was not pragmatic to 

compare all mapping functions that are available. The estimators were chosen based on their perceived 

theoretical advantage and their performance in previous mapping studies. 

The first was the ordinary least squares (OLS) regression with predicted utility scores censored at the 

value of 1. Whilst the OLS regression minimises the sum of squared errors, and represents the most 

common method within mapping studies [18], it has been shown to not cope well with multi-modal 

distributions [25] and does not always predict a perfect health. Despite its limitation, the OLS often 

gives good prediction accuracy in mapping. 

The generalised linear model (GLM) [26] was chosen as the second functional form because it 

accommodates skewness and heteroscedasticity in the estimation sample. The GLM requires 

specification of a distribution ‘family’ that captures the relationship between the mean and variance, 

and a link function between the linear part and the mean. The Modified Park test was applied to 

identify the preferred ‘family’ based on the lowest Chi squared (v
2
) value, and the Hosmer–Lemeshow 

and Pearson correlation tests [27, 28] were used to select the link function, defined as fitting well if 

both tests yielded non-significant P-values. The third form chosen for the prediction function was the 

Tobit model, a censored regression that accommodates both the lower and upper limit utility scores 

[29]. Tobit models have been suggested for mapping despite concerns about inconsistencies in the 

presence of non-normality and heteroscedasticity [30]. 

As well as the three functional forms chosen, other models have been used for mapping such as the 

beta-binomial estimator and finite mixture models used to accommodate skewed distributions 

[15]. However, neither of these models have been shown to be better than GLM or OLS when 

predicting utility value at near perfect health state [31, 32]. Furthermore, the MM-estimator [33] has the 

potential to cope with heteroscedasticity and the undesired effect of outliers within the estimation 

sample, and has been shown to have the lowest predictive error in a previous paper that mapped 

PedsQL
TM

 onto CHU-9D in an older population [15]. Unfortunately, however, the MM-estimator does 

not permit the use of cluster variables, which are required given the nature of this mapping sample. 

In addition, there are alternatives to the Tobit estimator for handling ceiling effects such as the multi-

variable fractional polynomials (MFP) and the censored least absolute deviation (CLAD) but, 

again, neither of these estimators have been convincingly shown to be better than OLS [34]. 

In summary, six model specifications (covariates) were developed based on the OLS, Tobit and the 

GLM ‘functional forms’, thus generating 18 models in total. The modes specification/covariates of 

these models are as follows: 

Model-1 PedsQL
TM

 total scale score Model-2 Model-1, age and sex Model-3 

PedsQL
TM

 subscale scores Model-4 Model-3, age and sex 

Model-5 PedsQL
TM

 subscale score square terms and 

interaction terms 

Model-6 Model-5, age and sex 

The PREDNOS data are a longitudinal dataset that can be viewed as having a two-stage structure, 

where the data collection timepoints (level 1 units) are nested within subjects/patients (level 2 unit). A 

random-intercept mixed-effect model is often used to account for multi-level hierarchical data 



  

structures, but was not considered appropriate in our mapping context because the relationship between 

CHU-9D and PedsQL
TM

 should be the same regardless of when the questionnaire was administered. In 

practice, neither the CHU-9D utility score nor PedsQL
TM

 total score computation depend on follow-up 

timepoints within studies. Therefore, the PREDNOS data were considered to have only one hierarchical 

level, which is at the patient level. The within-patient correlation was taken into account by including 

the ‘clustering’ option for each of the 18 model specifications. For example, Model-1 specification is as 

follows: 

regress [CHU-9D score] [PedsQL
TM

 score], vce (cluster, [patient ID]). 

where [patient ID] was a unique patient identifier. 

 

2.4 Assessing Model Performance 

The following selection criteria were applied to shortlist the models. 

 

Step 1 The models were assessed on the exactness of their mean prediction in the estimation 

sample [35]. Models that accurately predicted the mean CHU-9D score up to one-ten-

thousandth of a QALY were shortlisted for the next step 

Step 2 One model from each functional form was selected based on their combined prediction 

accuracy in the estimation and validation sample. The indicators of prediction accuracy 

were the mean absolute error (MAE) and the mean square error (MSE). The MAE is the mean 

absolute difference between the observed and the predicted values, while MSE is the mean 

squared difference between the observed and the predicted CHU-9D utility score. Larger MAE 

and MSE values indicate poorer fit, and vice versa. MAE was prioritised over MSE as the 

primary criterion because it has been shown to be less sensitive to outliers [36], which are often 

found with utility data 

Step 3 To assess and compare the shortlisted models from step 2, a series of assessments were 

applied. First, the distribution of the predicted and the observed CHU-9D scores were plotted 

to examine how well the predicted scores matched the observed. Second, the proportion of 

predictions deviating from observed values by < 0.03, 0.05 and < 0.1 were calculated as a 

representation of how often the models produce reliable predictions. Lastly, the 

MAEs were presented for different CHU-9D ranges to assess how well the models perform at 

the top and lower ranges of index scores 

All analysis described in Sect. 2.3 follows the Mapping onto Preference-based measures reporting 

Standards (MAPS) [37]. The Akaike information criterion (AIC), Bayesian information criterion 

(BIC) and R-square for selected models were presented for the final model but these were not used 

as model-selection criteria. The purpose of a mapping function is to predict utility values, not on 

explanatory power or fit of the function. 

3 Results 

3.1 Sample Characteristics 



  

There were 643 observations across the five data collection timepoints from children who were aged 5 

years or older presenting with first-episode corticosteroid-sensitive nephrotic syndrome. These 

observations were randomised into groups A (n = 321) and B (n = 322).  The longitudinal 

nature of the study meant that the number of missing items in the two groups varied across the data 

collection timepoints. After removing observations where either CHU-9D or PedsQL
TM

 index score 

could not be computed, the remaining 279 observations with pairs of valid PedsQL
TM

 and CHU-9D 

index scores in the first group formed the estimation sample, while the 284 observations in the 

second group formed the validation sample. The estimation and validation samples constituted the 

total mapping sample (N = 563). 

The randomisation yielded a balanced distribution of demographic characteristics between the estimation 

and the validation sample (Table 1). The mean CHU-9D utility score was 0.93742 (SD = 

0.07897) and 0.94094 (SD = 0.07173) for all observations within the estimation and validation 

sample, respectively. The mean PedsQL
TM

 score was 80.93 (SD = 16.76) within the estimation sample 

and 80.31 (SD = 17.79) within the validation sample. Within each sample, the mean PedsQL
TM

 total 

score was lower than the mean CHU-9D utility score when both scores were standardised on a 100-

point scale. Although both HRQoL measures were negatively skewed (Fig. 1), the ceiling effect was 

more prominent with the CHU-9D. Level 1 or ‘no problem’ always had the highest proportion of 

responses. For more details on the CHU-9D responses please refer to the Electronic Supplementary 

Material. 

There was a moderate statistical correlation between the CHU-9D utility scores and PedsQL
TM

 total 

scores (Spearman’s rho = 0.530; P<0.0001). The correlations between the CHU-9D utility score and 

PF, EF, FU and SF were 0.438, 0.585, 0.377 and 0.422, respectively. The Spearman correlation 

coefficient between the CHU-9D dimensions and PedsQL
TM

 subscale scores/functions ranged from - 

0.0672 to - 0.4523. All correlations were statistically significant (P<0.0001). 

3.2 Performance and Validation 

 
Table 2 summarises the performance measures for all the model specifications, for both the estimation 

and validation sample. Within the estimation sample, the models were able to reasonably predict 

the mean CHU-9D value (0.93742; SD = 0.07898). Of the 18 models, 12 were able to predict the 

precise mean value by up to one-ten-thousandth of a utility value, and were therefore shortlisted for 

the next selection process. The exceptions were the six Tobit models. Within the validation sample, 

however, the models were less able to predict the mean CHU-9D score (0.94094; SD = 0.07174). The 

GLM_2 had the lowest mean predicted value (0.93409) while Tobit_3 had the highest mean 

predicted value (0.96575), giving a difference between the observed and predicted mean values of 

0.0069 and 0.0245, respectively. These differences were below the threshold of 0.03—generally 

considered to be a minimally important difference [38, 39]. A further observation was that some OLS 

models and all of the Tobit models had maximum predicted values beyond the upper limit of the 

CHU-9D utility scale (0.33–1.00). However, none of the models predicted a utility value below the 

lower limit of the CHU-9D utility scale. 

All Tobit models were excluded from further analysis after the first selection criteria. For step 2, 

GLM_6 and OLS_3 had the ‘best’ performance in terms of MAE in the estimation and validation 

sample for their respective functional forms, and were therefore selected for a final comparison: step 

3. GLM_6 performed in the estimation sample, but the reverse was observed in the validation sample. 

 



  

Table 3 contains the model performance results. For the final models in step 3, the distribution of the 

predicted score was also examined (Fig. 2). GLM_6 had a wide range of predicted CHU-9D scores 

compared with OLS_3 (Fig. 2). Approximately 56% of the predicted values from GLM_6 in the 

validation sample had absolute errors lower than the minimally important difference value of 0.03; the 

corresponding value for the OLS3 was 53%.  GLM_6 remained the preferred model specification 

when the error threshold was extended to 0.05. 

 

Although the prediction accuracy of the mean scores were similar in both models, the accuracy level 

was not uniform across the CHU-9D utility range, as shown in Table 4.  The number of observations 

with a utility score of <0.7 was small; therefore the comparison between the best two models were 

restricted to observations with higher ultility values. GLM_6 was superior to OLS_3 in the estimation 

sample; however, in the validation sample there were diverging results. OLS_3 had a better 

prediction accuracy when utility values were higher than 0.8 but less than full health, whilst the 

GLM_6 was superior at predicting full health and utility values between 0.7 and 0.8. So, although 

OLS_3 had a better prediction accuracy in the validation sample overall, it was found to be only mar-

ginally better than GLM_6. 

 

In summary, relative to GLM_6, OLS_3 lacked the ability to predict the wider range of CHU-9D 

values (0.71), and a higher proportion of its predicted values had absolute errors above the minimally 

important difference. Furthermore, it was less able to predict full health; this is particularly important 

for utity data, which tends to have ceiling effects. Taking all these factors into account, the GLM_6 

model was selected as the preferred model for mapping from PedsQL
TM

to CHU-9D. Table 5 shows 

the coefficients for generating deterministic and probabilistic 

ty predictions using the GLM_6 model. Coefficients for OLS_3 have also been presented in 

situations where this might be desired. Using GLM_6 as an example, the CHU-9D utility score can be 

calculated from the following coefficients: 

 

CHU - 9D utility score 

= 0.7135215 + ( PedsQL PF)
2
 (1.62 * 10

-4
) 

+ ( PedsQL EF)
2
 (4.77 * 10

-4
) 

 ( PedsQL SF)
2
 (4.0 x 10

-5
) 

 ( PedsQL FU)
2
 (1.646 x 10

-4
) 

 ( PedsQL PF) ( PedsQL EF) (1.10 x 10
-4

) 

 ( PedsQL PF) ( PedsQL SF) (1.14 x 10
-4

) 

+ ( PedsQL PF) ( PedsQL FU) (3.7 x 10
-5

) 

 ( PedsQL EF) ( PedsQL SF) (2.46 x 10
-4

) 

 ( PedsQL EF) ( PedsQL FU) (1.16 x 10
-4

) 

+ ( PedsQL SF) ( PedsQL FU) (4.36 x 10
-4

) + Age (2.79 x 10
-2

) - (5.46 x 10
-4

)if femal 

 



  

Discussion 

 

Whilst complying with current guidance for conducting and reporting mapping analyses [37], the 

results of this analysis show that CHU-9D utility scores can be estimated from PedsQL
TM

 subscale 

scores with sufficient accuracy. 

A total of 18 models were explored: six model specifications, each with three functional forms. All 

the models produced reasonably similar predictions of the mean utility scores. The preferred algorithm 

for mapping PedsQL
TM

 onto CHU-9D was selected using a three-stage elimination process. The GLM 

and OLS models outperformed the Tobit models in terms of MAE, with GLM_6 and OLS_3 being 

shortlisted for the third and final selection process. GLM_6 was chosen as the preferred mapping 

model because it was able to predict a wider range of CHU-9D utility scores and had a higher 

proportion of predicted values, deviating from the observed values by less than 0.03. 

The GLM_6 model predicted the CHU-9D utility scores with more accuracy than other similar 

published studies (MAE = 0.04078; MSE = 0.00353). For example, in one study that looked at the 

relationship between the CHU-9D and the SDQ (Strengths and Difficulties Questionnaire; a 

behavioural questionnaire), the MSE was 0.124 [40, 41], while another study that estimated CHU-9D 

utility scores from the KIDSCREEN questionnaire had an MAE of 0.095 [42]. The GLM_6 produced 

from this analysis also performed better than a previous model that had predicted EQ–5D–Y 

(EuroQoL–youth version) utility scores from PedsQL
TM

 (MAE = 0.115) [35]. Furthermore, Mpundu-

Kaambwa and colleagues [15] mapped the PedsQL
TM

 onto the CHU-9D (MAE = 0.1169; MSE = 

0.0213) using an Australian value set and data derived from 15- to 17-yearolds. The mapping 

algorithm reported here has been derived from more observations, has a wider age range and used a 

UK value set. 

Despite these strengths, there are some limitations. The sample size was small compared with other 

mapping studies [5], thereby limiting the ability to robustly demonstrate the relationship 

between CHU-9D and PedsQL
TM

. A larger sample size may have reduced the prediction error of the 

model. Response mapping is an alternative to mapping summary scores whereby the domain 

scores from each instrument are mapped. However, a recent review [5] concluded that this more 

complex approach did not offer anything superior over and above a simpler mapping of summary 

scores, a finding that is supported by a recent applied study that mapped from PedsQL
TM

 onto 

CHU-9D [15]. For these reasons,  

this mapping exercise focused on summary score mapping only. Another caveat was the ceiling 

effect. A wider spectrum of health profiles was lacking as a considerable number of children had 

perfect or near perfect health, with none having utility scores below 0.5 in the estimation sample. 

This was reflected in the distribution of scores across the five response levels for each of the CHU-

9D domains and each PedsQL
TM

 subscale score. The implication is that caution is advised if using the 

algorithm for a less healthy paediatric population. Additionally, the age range of the sample reflected 

the natural history of the condition, with few older adolescents. Future research can focus on refining 

this mapping algorithm should data for children with more severe health states across a wider age range 

become available. 

A final methodological concern was the proxy completion of both HRQoL instruments in this study 

given that self-completion is the gold standard approach for measuring HRQoL, at least in adults [43, 

44]. Proxy-reported responses are not directly interchangeable because of proxy biases [45]. However, 

 



  

for some very young children the use of proxies is unavoidable. 

Mapping is not a substitute for direct utility estimation. It is therefore advised that, where possible, 

preference-based outcomes be collected for the measurement of cost effectiveness. However, if direct 

estimation is not feasible, the algorithm presented provides a valuable and scientifically robust 

approach to predicting CHU-9D utility values. 

The standard errors for the coefficients are reported, making it possible for future users of the 

algorithm to account for the uncertainty around the predicted values. 

 

5 Conclusion 

 
This study builds on a previous study that mapped PedsQL

TM
 onto CHU-9D scores within a 

sample of 15- to 17-year-olds using the Australian value set [15]. Our findings show that CHU9D 

scores can 

be estimated from PedsQL
TM

 generic core scale values with good prediction accuracy. The CHU-9D 

index score for this study was derived using the UK value set. Therefore, this algorithm can be used 

to generate QALYs for evaluating the cost effectiveness of interventions targeting children. Future 

research should consider validating this algorithm further in children with lower CHU-9D utility 

index scores than those observed in the PREDNOS study. 

Data Availability The data for this analysis were from the PREDNOS study and are not yet 

available because the study results have not been published. At the discretion of the funder (NIHR) of 

the study, the data may become publicly available at a later date. The methods section of the paper 

explains the randomisation and regression analysis underpinning this study. STATA
®

 do-files are, 

however, available from the corresponding author on request. 
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Table 1 Demographic characteristics of estimation and validation sample by data collection timepoint  

Demographic characteristic Timepoint      

Baseline 4 months 12 months 24 months 36 months 48 months 

Estimation sample 

n 

Sex 

Male [n (%)] 

Age (years) 

Mean (SD) 

55 

35 (63.6) 

7 (2.1) 

47 

33 (70.2) 

7.6 (2.1) 

58 

36 (62.1) 

7.4 (2.1) 

54 

32 (59.2) 

7.2 (1.9) 

39 

23 (58.9) 

7.3 (1.9) 

26 

18 (69.2) 

8.1 (2.0) 

Median (IQR) 6 (3) 7 (4) 7 (3) 7 (2) 7 (3) 8 (3) 

Range 5–12 5–12 5–12 5–12 5–12 5–12 

CHU-9D       
Mean (SD) 0.940 (0.063) 0.929 (0.103) 0.941 (0.080) 0.950 (0.068) 0.922 (0.081) 0.937 (0.077) 

Median (IQR) 0.952 (0.106) 0.952 (0.100) 0.952 (0.081) 0.968 (0.073) 0.931 (0.108) 0.967 (0.107) 

Range 0.786–1.000 0.534–1.000 0.509–1.000 0.68–1.000 0.702–1.000 0.697–1.000 

PedsQL
TM

       
Mean (SD) 77.11 (16.16) 82.4 (16.8) 81.94 (15.91) 84.24 (14.31) 78.49 (20.58) 80.85 (17.72) 

Median (IQR) 79.35 (28.26) 89.13 (29.35) 87.5 (20.65) 88.04 (18.48) 82.61 (30.43) 82.61 (29.35) 

Range 40.22–100.00 45.65–100.00 41.3–100.00 43.48–100.00 31.52–100.00 39.13–100.00 

Validation sample       
n 

Sex 

Male [n (%)] 

Age 

Mean (SD) 

36 

25 (69.4) 

6.9 (1.8) 

46 

30 (65.2) 

7.1 (1.9) 

50 

32 (64.0) 

7.3 (2.0) 

70 

44 (62.9) 

7.6 (2.2) 

56 

29 (51.8) 

7.4 (2.2) 

26 

15 (57.7) 

8 (1.9) 

Median (IQR) 7 (3) 7 (2) 7 (3) 7 (3) 7 (3) 8 (2) 

Range 5–11 5–12 5–12 5–12 5–13 5–13 

CHU-9D       
Mean (SD) 0.924 (0.081) 0.945 (0.067) 0.941 (0.075) 0.938 (0.076) 0.951 (0.067) 0.945 (0.06) 

Median (IQR) 0.952 (0.1) 0.96 (0.079) 0.96 (0.081) 0.952 (0.102) 0.967 (0.071) 0.959 (0.097) 

Range 0.711–1 0.69–1 0.739–1 0.65–1 0.712–1 0.828–1 

PedsQL
TM

       
Mean (SD) 75.88 (16.91) 81.35 (14.53) 78.28 (19.01) 80.6 (17.25) 83.13 (19.11) 81.68 (20.3) 

Median (IQR) 77.72 (27.36) 83.7 (18.48) 83.7 (28.26) 86.96 (27.17) 91.85 (27.17) 90.76 (20.65) 

Range 42.39–97.83 41.3–100 21.74–100 33.7–100 40.22–100 29.35–100 
 
CHU-9D Child Health Utility Index–9 Dimension, IQR interquartile range, PedsQLTM Paediatric Quality of Life Inventory generic core scale, SD 

standard deviation 
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Table 3 Model performance of 

the two best-fitting models 
Estimation sample  Validation sample  

Observed GLM_6 OLS_3 Observed GLM_6 OLS_3 

Mean 0.937419 0.937419 0.937419 0.940941 0.937612 0.939018 

SD 0.078978 0.051926 0.047318 0.071737 0.054762 0.046323 

CV 0.084251 0.055393 0.050477 0.076240 0.058406 0.049331 

Min. 0.509400 0.660930 0.812068 0.650000 0.705160 0.788717 

P25 0.907600 0.910639 0.900076 0.912300 0.914908 0.905183 

P50 0.952100 0.957229 0.946303 0.952100 0.958496 0.950063 

P75 1.000000 0.978902 0.980433 1.000000 0.977276 0.977413 

Max. 1.000000 0.989350 0.995221 1.000000 0.985504 0.993891 

MSE  0.00353 0.00398  0.00345 0.00310 

MAE  0.04078 0.04245  0.04182 0.03981 

<0.03 AE (%)  53.40 51.61  55.89 53.17 

<0.05 AE (%)  72.04 70.25  73.23 70.77 

<0.10 AE (%)  92.27 90.32  91.20 93.31 
 

CV coefficient of variation, GLM generalised linear model, MAE mean absolute error, Max. maximum 
value, Min. minimum value, MSE mean squared error, OLS ordinary least squares, P25 25th percentile, P50 50th 

percentile, P75 75th percentile, SD standard deviation,<0.03 AE (%) percentage with absolute error below 

0.03,<0.05 AE (%) percentage with absolute error below 0.05,<0.10 AE (%) percentage with absolute 

error below 0.10 

  



  

Table 4 Distribution of errors CHU-9D range 

by observed Child Health 
Utility Index–9 Dimension 

n GLM_6  OLS_3  

MSE MAE MSE MAE 

(CHU-9D) range 
Estimation      
0.5 < value<0.6 3 0.09443 0.30095 0.11168 0.33058 

0.6 < value<0.7 6 0.01873 0.12096 0.02823 0.16497 

0.7 < value<0.8 11 0.00726 0.07674 0.00988 0.09602 

0.8 < value<0.9 49 0.00301 0.04441 0.00259 0.04034 

0.9 < value<1.0 111 0.00154 0.02853 0.00155 0.03015 

Full health 102 0.00242 0.03847 0.00279 0.03899 

Validation      
0.6 < value<0.7 3 0.05502 0.23049 0.05277 0.22693 

0.7 < value<0.8 12 0.01185 0.09583 0.01376 0.10958 

0.8 < value<0.9 47 0.00468 0.05691 0.00329 0.04316 

0.9 < value<1.0 115 0.00187 0.03057 0.00131 0.02942 

Full health 107 0.00223 0.03593 0.00237 0.03643 

GLM generalised linear model, MAE mean absolute error, MSE mean squared error, OLS ordinary least 

squares 

     
Table 5 Coefficients for the 

two best-fitting models 
GLM_6  OLS_3  

Coefficient SE Coefficient SE 

PedsQL
TM

 PF squared 

PedsQL
TM

 EF squared 

PedsQL
TM

 SF squared 

PedsQL
TM

 FU squared 

0.000162 

0.000477*** 

- 0.000040 

- 0.0001646 

0.000103 

0.000127 

0.000145 

0.000101 

  

PedsQL
TM

 PF 9 EF - 0.000110 0.000147   
PedsQL

TM
 PF 9 SF - 0.000114 0.000173   

PedsQL
TM

 PF 9 FU 0.000037 0.000143   
PedsQL

TM
 EF 9 SF - 0.000246 0.000209   

PedsQL
TM

 EF 9 FU - 0.000116 0.000167   
PedsQL

TM
 SF 9 FU 0.000436*** 0.000130   

PedsQL
TM

 PF   0.0007133* 0.000297 

PedsQL
TM

 EF   0.0016477*** 0.000228 

PedsQL
TM

 SF   - 0.00011 0.000383 

PedsQL
TM

 FU   0.000261 0.000276 

Age 0.0279345 0.039717   
Sex - 0.0546336 0.146341   
Constant 0.7135215 0.399623 0.7422337*** 0.028841 

 
EF emotional functioning, FU school functioning, GLM generalised linear model, OLS ordinary least 

squares, PedsQLTM Paediatric Quality of Life Inventory generic core scale, PF physical functioning, SE 

standard error, SF social functioning 

* P<0.05, *** P<0.001 



  

 

 

Fig. 1 Kernel density plots of  

Child Health Utility Index–9 

Dimension (CHU-9D) utilities 

and Paediatric Quality of Life 

Inventory generic core scale 

(PedsQL
TM

) total scores for the 

estimation and validation data 
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