264 research outputs found

    The Effect of Anterior Tooth Position on Trumpet Performance Quality

    Get PDF
    poster abstractObjective: Music teachers contend that the arrangement of anterior teeth affects trumpet performance by influencing the embouchure. Since there is little quantitative data to support this claim, the purpose of this study was to determine whether trumpet performance skills are associated with the malalignment of anterior teeth. Methods: Following IRB approval, 70 trumpet students (55M:15F; aged 20-38.9 yrs.) from 11 universities were consented to complete a survey concerning dental history and trumpet playing habits. The students were asked to play a scripted performance skill test (flexibility, range, endurance, and articulation exercises) on their instrument in a soundproof music practice room while being audio and video recorded. A threedimensional (3D) cone beam computerized tomograph (CBCT) was taken of each student the same day as the skill test. Following reliability studies, overjet, overbite, and degree of anterior tooth irregularity (Little’s Index) were measured on the 3D CBCT. Nonparametric correlations, accepting p0.8). Significant (p<0.05), but weak (r<0.30) associations were found only between Little’s Index of the mandibular anterior dentition and the performance skills: flexibility (exercises a, c and avg) and articulation (double tongue). No other associations were significant. Conclusions: University trumpet students with mandibular anterior teeth that are smoothly aligned have significantly better performance skills than those with misaligned mandibular anterior teeth; however, the association is weak

    A prospective longitudinal study of performance status, an inflammation-based score (GPS) and survival in patients with inoperable non-small-cell lung cancer

    Get PDF
    The value of an inflammation-based prognostic score (Glasgow Prognostic score, GPS) was compared with performance status (ECOG-ps) in a longitudinal study of patients (n=101) with inoperable non-small-cell lung cancer (NSCLC). At diagnosis, stratified for treatment, only the GPS (HR 2.32, 95% CI 1.52–3.54, P<0.001) was a significant predictor of survival. In contrast, neither the GPS nor ECOG-ps measured at 3–6 months follow-up were significant predictors of residual survival. This study confirms the prognostic value of the GPS, at diagnosis, in patients with inoperable NSCLC. However, the role of the GPS and ECOG-ps during follow-up has not been established

    The Glucuronyltransferase GlcAT-P Is Required for Stretch Growth of Peripheral Nerves in Drosophila

    Get PDF
    During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Deep sequencing analysis of the heterogeneity of seed and commercial lots of the bacillus Calmette-Guerin (BCG) tuberculosis vaccine substrain Tokyo-172

    Get PDF
    BCG, only vaccine available to prevent tuberculosis, was established in the early 20th century by prolonged passaging of a virulent clinical strain of Mycobacterium bovis. BCG Tokyo-172, originally distributed within Japan in 1924, is one of the currently used reference substrains for the vaccine. Recently, this substrain was reported to contain two spontaneously arising, heterogeneous subpopulations (Types I and II). The proportions of the subpopulations changed over time in both distributed seed lots and commercial lots. To maintain the homogeneity of live vaccines, such variations and subpopulational mutations in lots should be restrained and monitored. We incorporated deep sequencing techniques to validate such heterogeneity in lots of the BCG Tokyo-172 substrain without cloning. By bioinformatics analysis, we not only detected the two subpopulations but also detected two intrinsic variations within these populations. The intrinsic variants could be isolated from respective lots as colonies cultured on plate media, suggesting analyses incorporating deep sequencing techniques are powerful, valid tools to detect mutations in live bacterial vaccine lots. Our data showed that spontaneous mutations in BCG vaccines could be easily monitored by deep sequencing without direct isolation of variants, revealing the complex heterogeneity of BCG Tokyo-172 and its daughter lots currently in use

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
    corecore