351 research outputs found

    Discovery of a Second L Subdwarf in the Two Micron All Sky Survey

    Full text link
    I report the discovery of the second L subdwarf identified in the Two Micron All Sky Survey, 2MASS J16262034+3925190. This high proper motion object (mu = 1.27+/-0.03 "/yr) exhibits near-infrared spectral features indicative of a subsolar metallicity L dwarf, including strong metal hydride and H2O absorption bands, pressure-broadened alkali lines, and blue near-infrared colors caused by enhanced collision-induced H2 absorption. This object is of later type than any of the known M subdwarfs, but does not appear to be as cool as the apparently late-type sdL 2MASS 0532+8246. The radial velocity (Vrad = -260+/-35 km/s) and estimated tangential velocity (Vtan ~ 90-210 km/s) of 2MASS 1626+3925 indicate membership in the Galactic halo, and this source is likely near or below the hydrogen burning minimum mass for a metal-poor star. L subdwarfs such as 2MASS 1626+3925 are useful probes of gas and condensate chemistry in low-temperature stellar and brown dwarf atmospheres, but more examples are needed to study these objects as a population as well as to define a rigorous classification scheme.Comment: 11 pages, 3 figures, accepted for publication ApJ Letters, v. 614 October 200

    Modelling of Collision Induced Absorption Spectra Of H2-H2 Pairs for the Planetary Atmospheres Structure: The Second Overtone Band

    Get PDF
    The main objective of the proposal was to model the collision induced, second overtone band of gaseous hydrogen at low temperatures. The aim of this work is to assist planetary scientists in their investigation of planetary atmospheres, mainly those of Uranus and Neptune. The recently completed extended database of collision induced dipole moments of hydrogen pairs allowed us, for the first time, to obtain dipole moment matrix elements responsible for the roto-vibrational collision induced absorption spectra of H2-H2 in the second overtone band. Despite our numerous attempts to publish those data, the enormous volume of the database did not allow us to do this. Instead, we deposited the data on a www site. The final part of this work has been partially supported by NASA, Division for Planetary Atmospheres. In order to use our new data for modelling purpose, we first needed to test how well we can reproduce the existing experimental data from theory, when using our new input data. Two papers resulted from this work. The obtained agreement between theoretical results and the measurements appeared to be within 10-30%. The obviously poorer agreement than observed for the first H2 overtone, the fundamental, and the rototranslational bands can be attributed to the fact that dipole moments responsible for the second overtone are much weaker, therefore susceptible to larger numerical uncertainties. At the same time, the intensity of the second overtone band is much weaker and therefore it is much harder to be measured accurately in the laboratory. We need to point out that until now, no dependable model of the 2nd overtone band was available for modelling of the planetary atmospheres. The only one, often referred to in previous works on Uranian and Neptune's atmospheres, uses only one lineshape, with one (or two) parameter(s) deduced at the effective temperature of Uranus (by fitting the planetary observation). After that, the parameter(s) was(were) made temperature dependent according to some very simple relation. Summarizing, no reliable temperature-dependent model has been available yet. Our approach was a bit different from similar attempts done earlier, on account of the poorer agreement of theory with experiment. We needed to resort to some semi-empirical procedure. While we were in a favourable position to be able to rely on the physical input data, these, apparently, did not supply the most dependable predictions (simply because the results did not agree well enough with experimental data). On the other hand, the relative deviations between the theory and experiment were comparable at 77 and at 298 K. That fact indicated that theory is capable of predicting the temperature dependence of the absorption spectra well. We have thus chosen the "middle way". We have fitted the existing measurements with many 3- parameter lineshapes, in order to achieve the closest fit

    An Improbable Solution to the Underluminosity of 2M1207B: A Hot Protoplanet Collision Afterglow

    Full text link
    We introduce an alternative hypothesis to explain the very low luminosity of the cool (L-type) companion to the ~25 M_Jup ~8 Myr-old brown dwarf 2M1207A. Recently, Mohanty et al. (2007) found that effective temperature estimates for 2M1207B (1600 +- 100 K) are grossly inconsistent with its lying on the same isochrone as the primary, being a factor of ~10 underluminous at all bands between I (0.8 um) and L' (3.6 um). Mohanty et al. explain this discrepency by suggesting that 2M1207B is an 8 M_Jup object surrounded by an edge-on disk comprised of large dust grains producing 2.5^m of achromatic extinction. We offer an alternative explanation: the apparent flux reflects the actual source luminosity. Given the temperature, we infer a small radius (~49,000 km), and for a range of plausible densities, we estimate a mass < M_Jup. We suggest that 2M1207B is a hot protoplanet collision afterglow and show that the radiative timescale for such an object is >~1% the age of the system. If our hypothesis is correct, the surface gravity of 2M1207B should be an order of magnitude lower than predicted by Mohanty et al. (2007).Comment: ApJ Letters, in press (11 pages

    Modeling of collision induced absorption spectra of CO2-CO2 pairs for planetary atmosphere of Venus

    Get PDF
    The objective of the proposal was to model the rototranslational and rotovibrational collision induced absorption spectral bands of importance for the radiative transfer analysis of the atmosphere of Venus. Our main task has involved CO2 pairs. The approach is not straightforward: whereas computational techniques to compute CIA spectra of small linear molecules exist, and were successfully applied to molecules like H2 or N2, they fail when applied to large molecules like CO2. For small molecules one can safely assume that the interaction potential is isotropic. The same approximation does not work for CO2, and when employed, it gives an incorrect band shape and only 50 percent of the CIA intensity

    Superior analyzer for raman spectra with high acceptance cone, resolution, transmission, and quantum efficiency, and strong background reduction

    Get PDF
    A Raman analyzer for analyzing light emitted from a Raman cell is provided that has a beam splitter configured to split the light emitted from the Raman cell into a first beam and a second beam. An atomic vapor filter can be used to filter a Raman scattered line from the first beam and a chopper system can periodically interrupt the first and second beams that are directed towards a photo detector, which can convert light from the first and second beams into an electrical signal. The signal output from the photo detector can optionally be amplified, digitized, Fourier filtered, and/or subjected to Fourier analysis.https://digitalcommons.mtu.edu/patents/1011/thumbnail.jp

    L and T Dwarf Models and the L to T Transition

    Full text link
    Using a model for refractory clouds, a novel algorithm for handling them, and the latest gas-phase molecular opacities, we have produced a new series of L and T dwarf spectral and atmosphere models as a function of gravity and metallicity, spanning the \teff range from 2200 K to 700 K. The correspondence with observed spectra and infrared colors for early- and mid-L dwarfs and for mid- to late-T dwarfs is good. We find that the width in infrared color-magnitude diagrams of both the T and L dwarf branches is naturally explained by reasonable variations in gravity and, therefore, that gravity is the "second parameter" of the L/T dwarf sequence. We investigate the dependence of theoretical dwarf spectra and color-magnitude diagrams upon various cloud properties, such as particle size and cloud spatial distribution. In the region of the L\toT transition, we find that no one cloud-particle-size and gravity combination can be made to fit all the observed data. Furthermore, we note that the new, lower solar oxygen abundances of Allende-Prieto, Lambert, & Asplund (2002) produce better fits to brown dwarf data than do the older values. Finally, we discuss various issues in cloud physics and modeling and speculate on how a better correspondence between theory and observation in the problematic L\toT transition region might be achieved.Comment: accepted to the Astrophysical Journal, 21 figures (20 in color); spectral models in electronic form available at http://zenith.as.arizona.edu/~burrow

    Acesso, equidade e coesão social: avaliação de estratégias intersetoriais para a população em situação de rua

    Get PDF
    Objective To understand and evaluate the work of intersectoral assistance on the insertion and the flow of people in situation of street with severe mental illness in public services of Mental Health. Method A case study developed from ten visits to a night shelter between March and April 2012. For data collection, the participant observation and semi-structured interviews were carried out with four sheltered individuals, as well as non-directive group interviews with five technicians of the social-assistance services. Results Were analyzed using Content Analysis and developing a Logic Model validated with the professionals involved. Conclusion The social assistance services are the main entry of this clientele in the public network of assistance services, and the Mental Health services have difficulty in responding to the specificities of the same clientele and in establishing intersectoral work.
Objetivo Compreender e avaliar o trabalho de assistência intersetorial sobre a inserção e o fluxo de pessoas em situação de rua, com transtorno mental grave, nos serviços públicos de Saúde Mental. Método Estudo de caso, desenvolvido a partir de 10 visitas a um albergue, entre março e abril de 2012. Para a coleta de dados foi realizada a observação participante e entrevistas semiestruturadas com quatro albergados, além de entrevistas não diretivas em grupo, com cinco técnicos dos serviços socioassistenciais. Resultados Foram analisados por meio da Análise de Conteúdo e da elaboração de Modelo Lógico, e validados junto aos profissionais envolvidos. Conclusão Os serviços socioassistenciais são a principal entrada dessa clientela à rede pública de assistência, e que os serviços de Saúde Mental apresentam dificuldades em responder às especificidades dessa mesma clientela e estabelecer trabalho intersetorial.
Objetivo Comprender y evaluar el trabajo de asistencia intersectorial acerca de la inserción y el flujo de personas en situación de calle, con trastorno mental severo, en los servicios públicos de Salud Mental. Método Estudio de caso, desarrollado a partir de 10 visitas a un albergue, entre marzo y abril de 2012. Para la recolección de datos fue realizada la observación participante y entrevistas semiestructuradas con cuatro albergados, además de entrevistas no directivas en grupo, con cinco técnicos de los servicios socioasistenciales. Resultados Fueron validados mediante el Análisis de Contenido y la confección del Modelo Lógico, y validados junto a los profesionales involucrados. Conclusión Los servicios socioasistenciales son la principal forma de ingreso de esa clientela a la red pública de asistencia, y que los servicios de Salud Mental presentan dificultades de responder a las especificidades de dicha clientela y establecer trabajo intersectorial.Universidade de São Paulo Faculty of MedicineUniversidade Federal de São Paulo (UNIFESP)UNIFESPSciEL

    Rosseland and Planck mean opacities for primordial matter

    Full text link
    We present newly calculated low-temperature opacities for gas with a primordial chemical composition. In contrast to earlier calculations which took a pure metal-free Hydrogen/Helium mixture, we take into account the small fractions of Deuterium and Lithium as resulting from Standard Big Bang Nucleosynthesis. Our opacity tables cover the density range -16 < log rho [g cm^{-3}] < -2 and temperature range of 1.8 < T [K] < 4.6, while previous tables were usually restricted to T > 10^3 K. We find that, while the presence of Deuterium does not significantly alter the opacity values, the presence of Lithium gives rise to major modifications of the opacities, at some points increasing it by approximately 2 orders of magnitude relative to pure Hydrogen/Helium opacities.Comment: 16 pages, 8 figures, submitted to MNRAS, all figures in grey-scale and at reduced resolution, for high-res colour PDF see http://www.ita.uni-heidelberg.de/~mm/publications/MayerDuschl-2.pd

    A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets

    Full text link
    We show that under certain circumstances the differences between the absorption mean and Planck mean opacities can lead to multiple solutions for an LTE atmospheric structure. Since the absorption and Planck mean opacities are not expected to differ significantly in the usual case of radiative equilibrium, non-irradiated atmospheres, the most interesting situations where the effect may play a role are strongly irradiated stars and planets, and also possibly structures where there is a significant deposition of mechanical energy, such as stellar chromospheres and accretion disks. We have presented an illustrative example of a strongly irradiated giant planet where the bifurcation effect is predicted to occur for a certain range of distances from the star.Comment: 22 pages, 6 figures, submitted to Ap

    Photophoretic Structuring of Circumstellar Dust Disks

    Full text link
    We study dust accumulation by photophoresis in optically thin gas disks. Using formulae of the photophoretic force that are applicable for the free molecular regime and for the slip-flow regime, we calculate dust accumulation distances as a function of the particle size. It is found that photophoresis pushes particles (smaller than 10 cm) outward. For a Sun-like star, these particles are transported to 0.1-100 AU, depending on the particle size, and forms an inner disk. Radiation pressure pushes out small particles (< 1 mm) further and forms an extended outer disk. Consequently, an inner hole opens inside ~0.1 AU. The radius of the inner hole is determined by the condition that the mean free path of the gas molecules equals the maximum size of the particles that photophoresis effectively works on (100 micron - 10 cm, depending on the dust property). The dust disk structure formed by photophoresis can be distinguished from the structure of gas-free dust disk models, because the particle sizes of the outer disks are larger, and the inner hole radius depends on the gas density.Comment: 15 pages, 9 figures, Accepted by ApJ; corrected a typo in the author nam
    corecore