28 research outputs found

    Minichromosome Maintenance 2 Bound with Retroviral Gp70 Is Localized to Cytoplasm and Enhances DNA-Damage-Induced Apoptosis

    Get PDF
    The interaction of viral proteins with host-cellular proteins elicits the activation of cellular signal transduction pathways and possibly leads to viral pathogenesis as well as cellular biological events. Apoptotic signals induced by DNA-damage are remarkably up-regulated by Friend leukemia virus (FLV) exclusively in C3H hosts; however, the mechanisms underlying the apoptosis enhancement and host-specificity are unknown. Here, we show that C3H mouse-derived hematopoietic cells originally express higher levels of the minichromosome maintenance (MCM) 2 protein than BALB/c- or C57BL/6-deriverd cells, and undergo more frequent apoptosis following doxorubicin-induced DNA-damage in the presence of the FLV envelope protein gp70. Dual transfection with gp70/Mcm2 reproduced doxorubicin-induced apoptosis even in BALB/c-derived 3T3 cells. Immunoprecipitation assays using various deletion mutants of MCM2 revealed that gp70 bound to the nuclear localization signal (NLS) 1 (amino acids 18–24) of MCM2, interfered with the function of NLS2 (amino acids 132–152), and suppressed the normal nuclear-import of MCM2. Cytoplasmic MCM2 reduced the activity of protein phosphatase 2A (PP2A) leading to the subsequent hyperphosphorylation of DNA-dependent protein kinase (DNA-PK). Phosphorylated DNA-PK exhibited elevated kinase activity to phosphorylate P53, thereby up-regulating p53-dependent apoptosis. An apoptosis-enhancing domain was identified in the C-terminal portion (amino acids 703–904) of MCM2. Furthermore, simultaneous treatment with FLV and doxorubicin extended the survival of SCID mice bearing 8047 leukemia cells expressing high levels of MCM2. Thus, depending on its subcellular localization, MCM2 plays different roles. It participates in DNA replication in the nucleus as shown previously, and enhances apoptosis in the cytoplasm

    Measurements of (nu)over-bar(mu) and (nu)over-bar(mu) + nu(mu) charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV

    Get PDF
    International audienceWe report measurements of the flux-integrated |νμ\overline{\nu}_\mu| and |νμ+νμ\overline{\nu}_\mu+\nu_\mu| charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced |μ±\mu^\pm| and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, |pμ>400 MeV/cp_{\mu}>400~{\rm MeV}/c| and |θμ200 MeV/c\theta_{\mu}200~{\rm MeV}/c|⁠, |θπ600 MeV/c\theta_{\pi}600~{\rm MeV}/c|⁠, |θp<70\theta_{\rm p}<70^{\circ}| is required. In this paper, both the |νμ\overline{\nu}_\mu| cross-sections and |νμ+νμ\overline{\nu}_\mu+\nu_\mu| cross-sections on water and hydrocarbon targets and their ratios are provided by using the D’Agostini unfolding method. The results of the integrated |νμ\overline{\nu}_\mu| cross-section measurements over this phase space are |σH2O=(1.082±0.068(stat.)0.128+0.145(syst.))×1039cm2/nucleon\sigma_{\rm H_{2}O}=(1.082\pm0.068(\rm stat.)^{+0.145}_{-0.128}(\rm syst.)) \times 10^{-39}\,{\rm cm^{2} / nucleon}|⁠, |σCH=(1.096±0.054(stat.)0.117+0.132(syst.))×1039cm2/nucleon\sigma_{\rm CH}=(1.096\pm0.054(\rm stat.)^{+0.132}_{-0.117}(\rm syst.)) \times 10^{-39}\,{\rm cm^{2} / nucleon}|⁠, and |σH2O/σCH=0.987±0.078(stat.)0.090+0.093(syst.)\sigma_{\rm H_{2}O}/\sigma_{\rm CH} = 0.987\pm0.078(\rm stat.)^{+0.093}_{-0.090}(\rm syst.)|⁠. The |νμ+νμ\overline{\nu}_\mu+\nu_\mu| cross-section is |σH2O=(1.155±0.064(stat.)0.129+0.148(syst.))×1039cm2/nucleon\sigma_{\rm H_{2}O} = (1.155\pm0.064(\rm stat.)^{+0.148}_{-0.129}(\rm syst.)) \times 10^{-39}\,{\rm cm^{2} / nucleon}|⁠, |σCH=(1.159±0.049(stat.)0.115+0.129(syst.))×1039cm2/nucleon\sigma_{\rm CH}=(1.159\pm0.049(\rm stat.)^{+0.129}_{-0.115}(\rm syst.)) \times 10^{-39}\,{\rm cm^{2} / nucleon}|⁠, and |σH2O/σCH=0.996±0.069(stat.)0.078+0.083(syst.)\sigma_{\rm H_{2}O}/\sigma_{\rm CH}=0.996\pm0.069(\rm stat.)^{+0.083}_{-0.078}(\rm syst.)|⁠

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Decline in subarachnoid haemorrhage volumes associated with the first wave of the COVID-19 pandemic

    Get PDF
    Background During the COVID-19 pandemic, decreased volumes of stroke admissions and mechanical thrombectomy were reported. The study's objective was to examine whether subarachnoid haemorrhage (SAH) hospitalisations and ruptured aneurysm coiling interventions demonstrated similar declines. Methods We conducted a cross-sectional, retrospective, observational study across 6 continents, 37 countries and 140 comprehensive stroke centres. Patients with the diagnosis of SAH, aneurysmal SAH, ruptured aneurysm coiling interventions and COVID-19 were identified by prospective aneurysm databases or by International Classification of Diseases, 10th Revision, codes. The 3-month cumulative volume, monthly volumes for SAH hospitalisations and ruptured aneurysm coiling procedures were compared for the period before (1 year and immediately before) and during the pandemic, defined as 1 March-31 May 2020. The prior 1-year control period (1 March-31 May 2019) was obtained to account for seasonal variation. Findings There was a significant decline in SAH hospitalisations, with 2044 admissions in the 3 months immediately before and 1585 admissions during the pandemic, representing a relative decline of 22.5% (95% CI -24.3% to -20.7%, p&lt;0.0001). Embolisation of ruptured aneurysms declined with 1170-1035 procedures, respectively, representing an 11.5% (95%CI -13.5% to -9.8%, p=0.002) relative drop. Subgroup analysis was noted for aneurysmal SAH hospitalisation decline from 834 to 626 hospitalisations, a 24.9% relative decline (95% CI -28.0% to -22.1%, p&lt;0.0001). A relative increase in ruptured aneurysm coiling was noted in low coiling volume hospitals of 41.1% (95% CI 32.3% to 50.6%, p=0.008) despite a decrease in SAH admissions in this tertile. Interpretation There was a relative decrease in the volume of SAH hospitalisations, aneurysmal SAH hospitalisations and ruptured aneurysm embolisations during the COVID-19 pandemic. These findings in SAH are consistent with a decrease in other emergencies, such as stroke and myocardial infarction

    Global impact of COVID-19 on stroke care

    Get PDF
    Background: The COVID-19 pandemic led to profound changes in the organization of health care systems worldwide. Aims: We sought to measure the global impact of the COVID-19 pandemic on the volumes for mechanical thrombectomy, stroke, and intracranial hemorrhage hospitalizations over a three-month period at the height of the pandemic (1 March–31 May 2020) compared with two control three-month periods (immediately preceding and one year prior). Methods: Retrospective, observational, international study, across 6 continents, 40 countries, and 187 comprehensive stroke centers. The diagnoses were identified by their ICD-10 codes and/or classifications in stroke databases at participating centers. Results: The hospitalization volumes for any stroke, intracranial hemorrhage, and mechanical thrombectomy were 26,699, 4002, and 5191 in the three months immediately before versus 21,576, 3540, and 4533 during the first three pandemic months, representing declines of 19.2% (95%CI, −19.7 to −18.7), 11.5% (95%CI, −12.6 to −10.6), and 12.7% (95%CI, −13.6 to −11.8), respectively. The decreases were noted across centers with high, mid, and low COVID-19 hospitalization burden, and also across high, mid, and low volume stroke/mechanical thrombectomy centers. High-volume COVID-19 centers (−20.5%) had greater declines in mechanical thrombectomy volumes than mid- (−10.1%) and low-volume (−8.7%) centers (p &lt; 0.0001). There was a 1.5% stroke rate across 54,366 COVID-19 hospitalizations. SARS-CoV-2 infection was noted in 3.9% (784/20,250) of all stroke admissions. Conclusion: The COVID-19 pandemic was associated with a global decline in the volume of overall stroke hospitalizations, mechanical thrombectomy procedures, and intracranial hemorrhage admission volumes. Despite geographic variations, these volume reductions were observed regardless of COVID-19 hospitalization burden and pre-pandemic stroke/mechanical thrombectomy volumes

    A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2–Dpb11

    No full text
    Phosphorylation often regulates protein–protein interactions to control biological reactions. The Sld2 and Dpb11 proteins of budding yeast form a phosphorylation-dependent complex that is essential for chromosomal DNA replication. The Sld2 protein has a cluster of 11 cyclin-dependent kinase (CDK) phosphorylation motifs (Ser/Thr–Pro), six of which match the canonical sequences Ser/Thr–Pro–X–Lys/Arg, Lys/Arg–Ser/Thr–Pro and Ser/Thr–Pro–Lys/Arg. Simultaneous alanine substitution for serine or threonine in all the canonical CDK-phosphorylation motifs severely reduces complex formation between Sld2 and Dpb11, and inhibits DNA replication. Here we show that phosphorylation of these canonical motifs does not play a direct role in complex formation, but rather regulates phosphorylation of another residue, Thr84. This constitutes a non-canonical CDK-phosphorylation motif within a 28-amino-acid sequence that is responsible, after phosphorylation, for binding of Sld2–Dpb11. We further suggest that CDK-catalysed phosphorylation of sites other than Thr84 renders Thr84 accessible to CDK. Finally, we argue that this novel mechanism sets a threshold of CDK activity for formation of the essential Sld2 to Dpb11 complex and therefore prevents premature DNA replication
    corecore