151 research outputs found

    Photolysis of sulphuric acid as the source of sulphur oxides in the mesosphere of Venus

    Get PDF
    The sulphur cycle plays fundamental roles in the chemistry and climate of Venus. Thermodynamic equilibrium chemistry at the surface of Venus favours the production of carbonyl sulphide and to a lesser extent sulphur dioxide. These gases are transported to the middle atmosphere by the Hadley circulation cell. Above the cloud top, a sulphur oxidation cycle involves conversion of carbonyl sulphide into sulphur dioxide, which is then transported further upwards. A significant fraction of this sulphur dioxide is subsequently oxidized to sulphur trioxide and eventually reacts with water to form sulphuric acid. Because the vapour pressure of sulphuric acid is low, it readily condenses and forms an upper cloud layer at altitudes of 60–70 km, and an upper haze layer above 70 km (ref. 9), which effectively sequesters sulphur oxides from photochemical reactions. Here we present simulations of the fate of sulphuric acid in the Venusian mesosphere based on the Caltech/JPL kinetics model, but including the photolysis of sulphuric acid. Our model suggests that the mixing ratios of sulphur oxides are at least five times higher above 90 km when the photolysis of sulphuric acid is included. Our results are inconsistent with the previous model results but in agreement with the recent observations using ground-based microwave spectroscopy and by Venus Express

    A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells

    Get PDF
    Purpose Glioblastoma Multiforme (GBM) is the commonest brain tumour in adults. A population of cells, known as cancer stem cells (CSCs), is thought to mediate chemo/radiotherapy resistance. CD133 is a cell surface marker to identify and isolate CSCs. However, its functional significance and the relevant microenvironment in which to study CD133 remain unknown. We examined the influence of hypoxia on CD133 expression and the potential functional significance of CD133 in glioblastoma chemoresistance. Methods Gene expression was analysed by qRT-PCR. siRNA technique was used to downregulate genes and confirmed by flow cytometry. IC50 values was evaluated with the Alamar blue assay. Results CD133 expression was upregulated in hypoxia in 2D and 3D models. There was increased resistance to chemotherapeutics, cisplatin, temozolomide and etoposide, in cells cultured in hypoxia compared to normoxia. siRNA knockdown of either HIF1a or HIF2a resulted in reduced CD133 mRNA expression with HIF2a having a more prolonged effect on CD133 expression. HIF2a downregulation sensitized GBM cells to cisplatin to a greater extent than HIF1a but CD133 knockdown had a much more marked effect on cisplatin sensitisation than knockdown of either of the HIFs suggesting a HIF-independent mechanism of cisplatin resistance mediated via CD133. The same mechanism was not involved in temozolomide resistance since downregulation of HIF1a but not HIF2a or CD133 sensitized GBM cells to temozolomide. Conclusion Knowledge of the mechanisms involved in the novel hypoxia-induced CD133-mediated resistance to cisplatin observed might lead to identification of new strategies that enable more effective use of current therapeutic agents

    Big Domains Are Novel Ca2+-Binding Modules: Evidences from Big Domains of Leptospira Immunoglobulin-Like (Lig) Proteins

    Get PDF
    binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. with dissociation constants of 2–4 ”M. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have ÎČ-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. binding

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    HIV-1 IN/Pol recruits LEDGF/p75 into viral particles

    Get PDF
    Background: The dynamic interaction between HIV and its host governs the replication of the virus and the study of the virus-host interplay is key to understand the viral lifecycle. The host factor lens epithelium-derived growth factor (LEDGF/p75) tethers the HIV preintegration complex to the chromatin through a direct interaction with integrase (IN). Small molecules that bind the LEDGF/p75 binding pocket of the HIV IN dimer (LEDGINs) block HIV replication through a multimodal mechanism impacting early and late stage replication including HIV maturation. Furthermore, LEDGF/p75 has been identified as a Pol interaction partner. This raised the question whether LEDGF/p75 besides acting as a molecular tether in the target cell, also affects late steps of HIV replication. Results: LEDGF/p75 is recruited into HIV-1 particles through direct interaction with the viral IN (or Pol polyprotein) and is a substrate for HIV-1 protease. Incubation in the presence of HIV-1 protease inhibitors resulted in detection of full-length LEDGF/p75 in purified viral particles. We also demonstrate that inhibition of LEDGF/p75-IN interaction by specific mutants or LEDGINs precludes incorporation of LEDGF/p75 in virions, underscoring the specificity of the uptake. LEDGF/p75 depletion did however not result in altered LEDGIN potency. Conclusion: Together, these results provide evidence for an IN/Pol mediated uptake of LEDGF/p75 in viral particles and a specific cleavage by HIV protease. Understanding of the possible role of LEDGF/p75 or its cleavage fragments in the viral particle awaits further experimentation
    • 

    corecore