28 research outputs found

    On Random Subspace Optimization-Based Hybrid Computing Models Predicting the California Bearing Ratio of Soils

    Get PDF
    The California Bearing Ratio (CBR) is an important index for evaluating the bearing capacity of pavement subgrade materials. In this research, random subspace optimization-based hybrid computing models were trained and developed for the prediction of the CBR of soil. Three models were developed, namely reduced error pruning trees (REPTs), random subsurface-based REPT (RSS-REPT), and RSS-based extra tree (RSS-ET). An experimental database was compiled from a total of 214 soil samples, which were classified according to AASHTO M 145, and included 26 samples of A-2-6 (clayey gravel and sand soil), 3 samples of A-4 (silty soil), 89 samples of A-6 (clayey soil), and 96 samples of A-7-6 (clayey soil). All CBR tests were performed in soaked conditions. The input parameters of the models included the particle size distribution, gravel content (G), coarse sand content (CS), fine sand content (FS), silt clay content (SC), organic content (O), liquid limit (LL), plastic limit (PL), plasticity index (PI), optimum moisture content (OMC), and maximum dry density (MDD). The accuracy of the developed models was assessed using numerous performance indexes, such as the coefficient of determination, relative error, MAE, and RMSE. The results show that the highest prediction accuracy was obtained using the RSS-based extra tree optimization technique

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Email user ranking based on email networks

    Full text link

    Devices layer up for stability

    No full text

    Burden of injuries in Vietnam: emerging trends from a decade of economic achievement

    Get PDF
    Background Vietnam has been one of the fastest-growing world economies in the past decade. The burden of injuries can be affected by economic growth given the increased exposure to causes of injury as well as decreased morbidity and mortality of those that experience injury. It is of interest to evaluate the trends in injury burden that occurred alongside Vietnam’s economic growth in the past decade. Methods Results from Global Burden of Disease 2017 were obtained and reviewed. Estimates of incidence, cause-specific mortality, years lived with disability, years of life lost, disability-adjusted life years were analysed and reported for 30 causes of injury in Vietnam from 2007 to 2017. Results Between 2007 and 2017, the age-standardised incidence rate of all injuries increased by 14.6% (11.5%–18.2%), while the age-standardised mortality rate decreased by 11.6% (3.0%–20.2%). Interpersonal violence experienced the largest increase in age-standardised incidence (28.3% (17.6%–40.1%)), while exposure to forces of nature had the largest decrease in age-standardised mortality (47.1% (37.9%–54.6%)). The five leading causes of injury in both 2007 and 2017 were road injuries, falls, exposure to mechanical forces, interpersonal violence and other unintentional injuries, all of which increased in incidence from 2007 to 2017. Injury burden varied markedly by age and sex. Conclusions The rapid expansions of economic growth in Vietnam as well as improvements in the Sociodemographic Index have occurred alongside dynamic patterns in injury burden. These results should be used to develop and implement prevention and treatment programme
    corecore