61 research outputs found

    Overwintering Hosts for the Exotic Leafroller Parasitoid, Colpoclypeus florus: Implications for Habitat Manipulation to Augment Biological Control of Leafrollers in Pome Fruits

    Get PDF
    Thirty sites of managed and native habitats were surveyed for leafrollers (Lepidoptera: Tortricidae) in the apple producing region of central Washington State and northern Oregon from September through November 1997–2000 to discover species that supported overwintering by the parasitoid Colpoclypeus florus (Walker) (Hymenoptera: Eulophidae). C. florus, a species introduced from Europe, requires medium to large host larvae late in autumn on which to overwinter, and few leafroller species display this biology. Over the four years, five potential C. florus hosts were collected, including: Ancylis comptana (Froelich), Xenotemna pallorana (Robinson), and Syndemis sp. (Tortricidae), Filatima sp. (Gelechiidae), and Caloptilia burgessiellia (Zeller) (Gracillariidae). Of these, A. comptana, Syndemis sp., and Filatima sp. have been confirmed as overwintering hosts for C. florus. During the four years, the Syndemis sp. was rare and observed at only one location feeding on redosier dogwood, Cornus sericea L. (Cornales: Cornaceae) although, at this location, many of the larvae collected were parasitized by C. florus. Filatima sp. was common in the Yakima valley feeding on balsam poplar, Populus balsamifera L. ssp. trichocarpa (Torr. & Gray ex Hook) Brayshaw (Malpighiales: Salicaceae) but was rarely parasitized. A. comptana, however, was collected at many locations in central Washington and was frequently found as an overwintering host for C. florus. A. comptana was found feeding on two Rosaceae: Wood's rose, Rosa woodsii Lindl., and strawberry, Fragaria ananassa Duchesne (Rosales: Rosaceae). Based on the number of host larvae collected, A. comptana appears to be the primary overwintering host for C. florus in Washington. Introduction of A. comptana populations to near-orchard habitats may facilitate biological control of leafrollers that are orchard pests

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

    Get PDF
    The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today

    Four Novel Loci (19q13, 6q24, 12q24, and 5q14) Influence the Microcirculation In Vivo

    Get PDF
    Jaakko Tuomilehto Global BPgen Consortium'n jäsenPeer reviewe
    corecore