96 research outputs found

    Connecting Health and Technology (CHAT): protocol of a randomized controlled trial to improve nutrition behaviours using mobile devices and tailored text messaging in young adults

    Get PDF
    Background: Increasing intakes of fruits and vegetables intake, in tandem with reducing consumption of energy-dense and nutrient poor foods and beverages are dietary priorities to prevent chronic disease. Although most adults do not eat enough fruit and vegetables, teenagers and young adults tend to have the lowest intakes. Young adults typically consume a diet which is inconsistent with the dietary recommendations. Yet little is known about the best approaches to improve dietary intakes and behaviours among this group. This randomised controlled trial aims to evaluate the effectiveness of using a mobile device to assess dietary intake, provide tailored dietary feedback and text messages to motivate changes in fruit, vegetable and junk food consumption among young adults

    Managing obesity through mobile phone applications: a state-of-the-art review from a user-centred design perspective

    Get PDF
    Evidence has shown that the trend of increasing obesity rates has continued in the last decade. Mobile phone applications, benefiting from their ubiquity, have been increasingly used to address this issue. In order to increase the applications’ acceptance and success, a design and development process that focuses on users, such as User-Centred Design, is necessary. This paper reviews reported studies that concern the design and development of mobile phone applications to prevent obesity, and analyses them from a User-Centred Design perspective. Based on the review results, strengths and weaknesses of the existing studies were identified. Identified strengths included: evidence of the inclusion of multidisciplinary skills and perspectives; user involvement in studies; and the adoption of iterative design practices. Weaknesses included the lack of specificity in the selection of end-users and inconsistent evaluation protocols. The review was concluded by outlining issues and research areas that need to be addressed in the future, including: greater understanding of the effectiveness of sharing data between peers; privacy; and guidelines for designing for behavioural change through mobile phone applications

    Gene-enhanced tissue engineering for dental hard tissue regeneration: (2) dentin-pulp and periodontal regeneration

    Get PDF
    Potential applications for gene-based tissue engineering therapies in the oral and maxillofacial complex include the delivery of growth factors for periodontal regeneration, pulp capping/dentin regeneration, and bone grafting of large osseous defects in dental and craniofacial reconstruction. Part 1 reviewed the principals of gene-enhanced tissue engineering and the techniques of introducing DNA into cells. This manuscript will review recent advances in gene-based therapies for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping and periodontal regeneration

    A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli.

    Get PDF
    Lipid A is a highly conserved component of lipopolysaccharide (LPS), itself a major component of the outer membrane of Gram-negative bacteria. Lipid A is essential to cells and elicits a strong immune response from humans and other animals. We developed a quantitative model of the nine enzyme-catalyzed steps of Escherichia coli lipid A biosynthesis, drawing parameters from the experimental literature. This model accounts for biosynthesis regulation, which occurs through regulated degradation of the LpxC and WaaA (also called KdtA) enzymes. The LpxC degradation signal appears to arise from the lipid A disaccharide concentration, which we deduced from prior results, model results, and new LpxK overexpression results. The model agrees reasonably well with many experimental findings, including the lipid A production rate, the behaviors of mutants with defective LpxA enzymes, correlations between LpxC half-lives and cell generation times, and the effects of LpxK overexpression on LpxC concentrations. Its predictions also differ from some experimental results, which suggest modifications to the current understanding of the lipid A pathway, such as the possibility that LpxD can replace LpxA and that there may be metabolic channeling between LpxH and LpxB. The model shows that WaaA regulation may serve to regulate the lipid A production rate when the 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) concentration is low and/or to control the number of KDO residues that get attached to lipid A. Computation of flux control coefficients showed that LpxC is the rate-limiting enzyme if pathway regulation is ignored, but that LpxK is the rate-limiting enzyme if pathway regulation is present, as it is in real cells. Control also shifts to other enzymes if the pathway substrate concentrations are not in excess. Based on these results, we suggest that LpxK may be a much better drug target than LpxC, which has been pursued most often

    Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils

    Get PDF
    Nutrients constrain the soil carbon cycle in tropical forests, but we lack knowledge on how these constraints vary within the soil microbial community. Here, we used in situ fertilization in a montane tropical forest and in two lowland tropical forests on contrasting soil types to test the principal hypothesis that there are different nutrient constraints to different groups of microorganisms during the decomposition of cellulose. We also tested the hypotheses that decomposers shift from nitrogen to phosphorus constraints from montane to lowland forests, respectively, and are further constrained by potassium and sodium deficiency in the western Amazon. Cellulose and nutrients (nitrogen, phosphorus, potassium, sodium, and combined) were added to soils in situ, and microbial growth on cellulose (phospholipid fatty acids and ergosterol) and respiration were measured. Microbial growth on cellulose after single nutrient additions was highest following nitrogen addition for fungi, suggesting nitrogen as the primary limiting nutrient for cellulose decomposition. This was observed at all sites, with no clear shift in nutrient constraints to decomposition between lowland and montane sites. We also observed positive respiration and fungal growth responses to sodium and potassium addition at one of the lowland sites. However, when phosphorus was added, and especially when added in combination with other nutrients, bacterial growth was highest, suggesting that bacteria out-compete fungi for nitrogen where phosphorus is abundant. In summary, nitrogen constrains fungal growth and cellulose decomposition in both lowland and montane tropical forest soils, but additional nutrients may also be of critical importance in determining the balance between fungal and bacterial decomposition of cellulose

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore