9 research outputs found

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    A Biologically-Inspired Clustering Algorithm Dependent on Spatial Data in Sensor Networks.

    Get PDF
    Sensor networks in environmental monitoring applications aim to provide scientists with a useful spatio-temporal representation of the observed phenomena. This helps to deepen their understanding of the environmental signals that cover large geographic areas. In this paper, the spatial aspect of this data handling requirement is met by creating clusters in a sensor network based on the rate of change of an oceanographic signal with respect to space. Inspiration was drawn from quorum sensing, a biological process that is carried out within communities of bacterial cells. The paper demonstrates the control the user has over the sensitivity of the algorithm to the data variation and the energy consumption of the nodes while they run the algorithm

    Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China

    No full text
    The ongoing outbreak of viral pneumonia in China and beyond is associated with a novel coronavirus, provisionally termed 2019-nCoV. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection. Although bats are likely reservoir hosts for 2019-nCoV, the identity of any intermediate host facilitating transfer to humans is unknown. Here, we report the identification of 2019-nCoV related coronaviruses in pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin associated CoVs that belong to two sub-lineages of 2019-nCoV related coronaviruses, including one very closely related to 2019-nCoV in the receptor-binding domain. The discovery of multiple lineages of pangolin coronavirus and their similarity to 2019-nCoV suggests that pangolins should be considered as possible intermediate hosts for this novel human virus and should be removed from wet markets to prevent zoonotic transmission

    Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins

    No full text
    The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission

    Image Analysis and Computer Vision: 1998

    No full text

    Image Analysis and Computer Vision: 1997

    No full text

    1997 Amerasia Journal

    No full text
    corecore