3,152 research outputs found

    Embedded Solitons in Lagrangian and Semi-Lagrangian Systems

    Full text link
    We develop the technique of the variational approximation for solitons in two directions. First, one may have a physical model which does not admit the usual Lagrangian representation, as some terms can be discarded for various reasons. For instance, the second-harmonic-generation (SHG) model considered here, which includes the Kerr nonlinearity, lacks the usual Lagrangian representation if one ignores the Kerr nonlinearity of the second harmonic, as compared to that of the fundamental. However, we show that, with a natural modification, one may still apply the variational approximation (VA) to those seemingly flawed systems as efficiently as it applies to their fully Lagrangian counterparts. We call such models, that do not admit the usual Lagrangian representation, \textit{semi-Lagrangian} systems. Second, we show that, upon adding an infinitesimal tail that does not vanish at infinity, to a usual soliton ansatz, one can obtain an analytical criterion which (within the framework of VA) gives a condition for finding \textit{embedded solitons}, i.e., isolated truly localized solutions existing inside the continuous spectrum of the radiation modes. The criterion takes a form of orthogonality of the radiation mode in the infinite tail to the soliton core. To test the criterion, we have applied it to both the semi-Lagrangian truncated version of the SHG model and to the same model in its full form. In the former case, the criterion (combined with VA for the soliton proper) yields an \emph{exact} solution for the embedded soliton. In the latter case, the criterion selects the embedded soliton with a relative error ≈1\approx 1%.Comment: 10 pages, 1 figur

    Powering up: Latin America's energy challenges: Bolivia’s nationalised natural gas: social and economic stability under morales

    Get PDF

    Physical dynamics of quasi-particles in nonlinear wave equations

    Full text link
    By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field.Comment: 10 pages, 3 figures (6 images); v2: revised and improved the presentation, updated the references, fixed typos; v3: corrected a few minor mistakes and typos, version accepted for publication in Phys. Lett.
    • …
    corecore