289 research outputs found

    AMNet: Memorability Estimation with Attention

    Get PDF
    In this paper we present the design and evaluation of an end-to-end trainable, deep neural network with a visual attention mechanism for memorability estimation in still images. We analyze the suitability of transfer learning of deep models from image classification to the memorability task. Further on we study the impact of the attention mechanism on the memorability estimation and evaluate our network on the SUN Memorability and the LaMem datasets. Our network outperforms the existing state of the art models on both datasets in terms of the Spearman's rank correlation as well as the mean squared error, closely matching human consistency

    A Comparison of Embedded Deep Learning Methods for Person Detection

    Full text link
    Recent advancements in parallel computing, GPU technology and deep learning provide a new platform for complex image processing tasks such as person detection to flourish. Person detection is fundamental preliminary operation for several high level computer vision tasks. One industry that can significantly benefit from person detection is retail. In recent years, various studies attempt to find an optimal solution for person detection using neural networks and deep learning. This study conducts a comparison among the state of the art deep learning base object detector with the focus on person detection performance in indoor environments. Performance of various implementations of YOLO, SSD, RCNN, R-FCN and SqueezeDet have been assessed using our in-house proprietary dataset which consists of over 10 thousands indoor images captured form shopping malls, retails and stores. Experimental results indicate that, Tiny YOLO-416 and SSD (VGG-300) are the fastest and Faster-RCNN (Inception ResNet-v2) and R-FCN (ResNet-101) are the most accurate detectors investigated in this study. Further analysis shows that YOLO v3-416 delivers relatively accurate result in a reasonable amount of time, which makes it an ideal model for person detection in embedded platforms

    Improving the Segmentation Stage of a Pedestrian Tracking Video-based System by means of Evolution Strategies

    Get PDF
    12 pages, 7 figures.-- Contributed to: Eighth European Workshop on Evolutionary Computation in Image Analysis and Signal Processing (EvoIASP 2006, Budapest, Hungary, Apr 10-12, 2006).Pedestrian tracking video-based systems present particular problems such as the multi fragmentation or low level of compactness of the resultant blobs due to the human shape or movements. This paper shows how to improve the segmentation stage of a video surveillance system by adding morphological post-processing operations so that the subsequent blocks increase their performance. The adjustment of the parameters that regulate the new morphological processes is tuned by means of Evolution Strategies. Finally, the paper proposes a group of metrics to assess the global performance of the surveillance system. After the evaluation over a high number of video sequences, the results show that the shape of the tracks match up more accurately with the parts of interests. Thus, the improvement of segmentation stage facilitates the subsequent stages so that global performance of the surveillance system increases.Funded by CICYT (TIC2002-04491-C02-02)Publicad

    Robotic Monitoring of Habitats: The Natural Intelligence Approach

    Get PDF
    In this paper, we first discuss the challenges related to habitat monitoring and review possible robotic solutions. Then, we propose a framework to perform terrestrial habitat monitoring exploiting the mobility of legged robotic systems. The idea is to provide the robot with the Natural Intelligence introduced as the combination of the environment in which it moves, the intelligence embedded in the design of its body, and the algorithms composing its mind. This approach aims to solve the challenges of deploying robots in real natural environments, such as irregular and rough terrains, long-lasting operations, and unexpected collisions, with the final objective of assisting humans in assessing the habitat conservation status. Finally, we present examples of robotic monitoring of habitats in four different environments: forests, grasslands, dunes, and screes

    Robotic Monitoring of Habitats: the Natural Intelligence Approach

    Get PDF
    In this paper, we first discuss the challenges related to habitat monitoring and review possible robotic solutions. Then, we propose a framework to perform terrestrial habitat monitoring exploiting the mobility of legged robotic systems. The idea is to provide the robot with the Natural Intelligence introduced as the combination of the environment in which it moves, the intelligence embedded in the design of its body, and the algorithms composing its mind. This approach aims to solve the challenges of deploying robots in real natural environments, such as irregular and rough terrains, long-lasting operations, and unexpected collisions, with the final objective of assisting humans in assessing the habitat conservation status. Finally, we present examples of robotic monitoring of habitats in four different environments: forests, grasslands, dunes, and screes

    Activity Inference for Ambient Intelligence Through Handling Artifacts in a Healthcare Environment

    Get PDF
    Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user

    Bio-inspired relevant interaction modelling in cognitive crowd management

    Get PDF
    Cognitive algorithms, integrated in intelligent systems, represent an important innovation in designing interactive smart environments. More in details, Cognitive Systems have important applications in anomaly detection and management in advanced video surveillance. These algorithms mainly address the problem of modelling interactions and behaviours among the main entities in a scene. A bio-inspired structure is here proposed, which is able to encode and synthesize signals, not only for the description of single entities behaviours, but also for modelling cause–effect relationships between user actions and changes in environment configurations. Such models are stored within a memory (Autobiographical Memory) during a learning phase. Here the system operates an effective knowledge transfer from a human operator towards an automatic systems called Cognitive Surveillance Node (CSN), which is part of a complex cognitive JDL-based and bio-inspired architecture. After such a knowledge-transfer phase, learned representations can be used, at different levels, either to support human decisions, by detecting anomalous interaction models and thus compensating for human shortcomings, or, in an automatic decision scenario, to identify anomalous patterns and choose the best strategy to preserve stability of the entire system. Results are presented in a video surveillance scenario , where the CSN can observe two interacting entities consisting in a simulated crowd and a human operator. These can interact within a visual 3D simulator, where crowd behaviour is modelled by means of Social Forces. The way anomalies are detected and consequently handled is demonstrated, on synthetic and also on real video sequences, in both the user-support and automatic modes
    • 

    corecore