210 research outputs found

    Reproductive Benefits of Sexual Cannibalism

    Get PDF
    https://openscholarship.wustl.edu/spring2019_margetts/1007/thumbnail.jp

    Image reconstruction/synthesis from nonuniform data and zero/threshold crossings

    Full text link

    Image reconstruction/synthesis from nonuniform data and zero/threshold crossings

    Get PDF
    We address the problem of reconstructing functions from their nonuniform data and zero/threshold crossings. We introduce a deterministic process via the Gram-Schmidt orthonormalization procedure to reconstruct functions from their nonuniform data and zero/threshold crossings. This is achieved by first introducing the nonorthogonal basis functions in a chosen 2-D domain (e.g., for a band-limited signal, a possible choice is the 2-D Fourier domain of the image) that span the signal subspace of the nonuniform data. We then use the Gram-Schmidt procedure to construct a set of orthogonal basis functions that span the linear signal subspace defined by the nonorthogonal basis functions. Next, we project the N-dimensional measurement vector (N is the number of nonuniform data or threshold crossings) onto the newly constructed orthogonal basis functions. Finally, the function at any point can be reconstructed by projecting the representation with respect to the newly constructed orthonormal basis functions onto the reconstruction basis functions that span the signal subspace of the evenly spaced sampled data. The reconstructed signal gives the minimum mean square error estimate of the original signal. This procedure gives error-free reconstruction provided that the nonorthogonal basis functions that span the signal subspace of the nonuniform data form a complete set in the signal subspace of the original band-limited signal. We apply this algorithm to reconstruct functions from their unevenly spaced sampled data and zero crossings and also apply it to solve the problem of synthesis of a 2-D band-limited function with the prescribed level crossings

    Moving Target Detection in Foliage Using Along Track Monopulse Synthetic Aperture Radar Imaging

    Get PDF
    Abstract-This paper presents a method for detecting moving targets embedded in foliage from the monostatic and bistatic Synthetic Aperture Radar (SAR) data obtained via two airborne radars. The two radars, which are mounted on the same aircraft, have different coordinates in the along track (cross-range) domain. However, unlike the interferometric SAR systems used for topographic mapping, the two radars possess a common range and altitude (i.e., slant range). The resultant monopulse SAR images are used to construct difference and interferometric images for moving target detection. It is shown that the signatures of the stationary targets are weakened in these images. Methods for estimating a moving target's motion parameters are discussed. Results for an ultrawideband UHF SAR system are presented

    Bistatic Radar Configuration for Soil Moisture Retrieval: Analysis of the Spatial Coverage

    Get PDF
    Some outcomes of a feasibility analysis of a spaceborne bistatic radar mission for soil moisture retrieval are presented in this paper. The study starts from the orbital design of the configuration suitable for soil moisture estimation identified in a previous study. This configuration is refined according to the results of an analysis of the spatial resolution. The paper focuses on the assessment of the spatial coverage i.e., on the verification that an adequate overlap between the footprints of the antennas is ensured and on the duty cycle, that is the fraction of orbital period during which the bistatic data are acquired. A non-cooperating system is considered, in which the transmitter is the C-band Advanced Synthetic Aperture Radar aboard Envisat. The best performances in terms of duty cycle are achieved if the transmitter operates in Wide Swath Mode. The higher resolution Image Swath Modes that comply with the selected configuration have a duty cycle that is never less than 12% and can exceed 21%. When Envisat operates in Wide Swath Mode, the bistatic system covers a wide latitude range across the equator, while in some of the Image Swath Modes, the bistatic measurements, collected from the same orbit, cover mid-latitude areas. In the latter case, it might be possible to achieve full coverage in an Envisat orbit repeat cycle, while, for a very large latitude range such as that covered in Wide Swath Mode, bistatic acquisitions could be obtained over about 65% of the area

    Interferometric inverse synthetic aperture radar experiment using an interferometric linear frequency modulated continuous wave millimetre-wave radar

    Get PDF
    D. Felguera-Martín,1 J.-T. González-Partida,1 P. Almorox-González,1 M. Burgos-García,1 and B.-P. Dorta-Naranjo2 1Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Grupo de Microondas y Radar. Departamento de Señales, Sistemas y Radiocomunicaciones, Madrid, Spain 2Universidad de Las Palmas de Gran Canaria, Departamento de Señales y Comunicaciones, Las Palmas de Gran Canaria, Spain An interferometric linear frequency modulated continuous wave (LFMCW) millimetre-wave radar is presented, along with the results of an experiment conducted to study the feasibility of using it in a future millimetre-wave interferometric inverse synthetic aperture radar (InISAR) system. First, a description of the radar is given. Then, the signal processing chain is described, with special attention to the phase unwrapping technique. The interferometric phase is obtained by unwrapping the prominent target's phase in each antenna using a sliding frame processing technique. Cell migration issues in this method are also addressed. Simulations were carried out to illustrate and assess the processing chain and to show the effects of multipath echoes on the height measurement. In the real experiment, the range, speed and height of a moving target were tracked over consecutive inverse synthetic aperture radar (ISAR) image frames, verifying the performance of the whole system
    corecore