4,754 research outputs found

    Indirect detection of Dark Matter with antimatter: Demystifying the clumpiness boost factors

    Full text link
    The hierarchical scenario of structure formation, in the frame of the Λ\Lambda-CDM cosmology, predicts the existence of dark matter (DM) sub-halos down to very small scales, of which the minimal size depends on the microscopic properties of the DM. In the context of annihilating DM, such substructures are expected to enhance the primary cosmic ray (CR) fluxes originating from DM annihilation in the Galaxy. This enhancement has long been invoked to allow predictions of imprints of DM annihilation on the antimatter CR spectra. Taking advantage of the method developed by Lavalle et al (2007b), we (Lavalle et al, 2007a) accurately compute the boost factors for positrons and anti-protons, as well as the associated theoretical and statistical errors. To this aim, we use a compilation of the latest results of cosmological N-body simulations and the theoretical insights found in the literature. We find that sub-halos are not likely to significantly boost the exotic production of antimatter CRs.Comment: Proceeding of the SciNeGHE07 workshop (Frascati, Italy, June 2007

    Making sense of the local Galactic escape speed estimates in direct dark matter searches

    Get PDF
    Direct detection (DD) of dark matter (DM) candidates in the â‰Č\lesssim10 GeV mass range is very sensitive to the tail of their velocity distribution. The important quantity is the maximum WIMP speed in the observer's rest frame, i.e. in average the sum of the local Galactic escape speed vescv_{\rm esc} and of the circular velocity of the Sun vcv_c. While the latter has been receiving continuous attention, the former is more difficult to constrain. The RAVE Collaboration has just released a new estimate of vescv_{\rm esc} (Piffl {\em et al.}, 2014 --- P14) that supersedes the previous one (Smith {\em et al.}, 2007), which is of interest in the perspective of reducing the astrophysical uncertainties in DD. Nevertheless, these new estimates cannot be used blindly as they rely on assumptions in the dark halo modeling which induce tight correlations between the escape speed and other local astrophysical parameters. We make a self-consistent study of the implications of the RAVE results on DD assuming isotropic DM velocity distributions, both Maxwellian and ergodic. Taking as references the experimental sensitivities currently achieved by LUX, CRESST-II, and SuperCDMS, we show that: (i) the exclusion curves associated with the best-fit points of P14 may be more constraining by up to ∌40\sim 40% with respect to standard limits, because the underlying astrophysical correlations induce a larger local DM density; (ii) the corresponding relative uncertainties inferred in the low WIMP mass region may be moderate, down to 10-15% below 10 GeV. We finally discuss the level of consistency of these results with other independent astrophysical constraints. This analysis is complementary to others based on rotation curves.Comment: 18 pages, 7 figures. V2: improved version that matches to the published on

    Global Numerical Constraints on Trees

    Full text link
    We introduce a logical foundation to reason on tree structures with constraints on the number of node occurrences. Related formalisms are limited to express occurrence constraints on particular tree regions, as for instance the children of a given node. By contrast, the logic introduced in the present work can concisely express numerical bounds on any region, descendants or ancestors for instance. We prove that the logic is decidable in single exponential time even if the numerical constraints are in binary form. We also illustrate the usage of the logic in the description of numerical constraints on multi-directional path queries on XML documents. Furthermore, numerical restrictions on regular languages (XML schemas) can also be concisely described by the logic. This implies a characterization of decidable counting extensions of XPath queries and XML schemas. Moreover, as the logic is closed under negation, it can thus be used as an optimal reasoning framework for testing emptiness, containment and equivalence

    Remnants of galactic subhalos and their impact on indirect dark-matter searches

    Full text link
    Dark-matter subhalos, predicted in large numbers in the cold-dark-matter scenario, should have an impact on dark-matter-particle searches. Recent results show that tidal disruption of these objects in computer simulations is overefficient due to numerical artifacts and resolution effects. Accounting for these results, we re-estimated the subhalo abundance in the Milky Way using semianalytical techniques. In particular, we showed that the boost factor for gamma rays and cosmic-ray antiprotons is increased by roughly a factor of twoJ.L. and M.S. are partly supported by the Agence Nationale pour la Recherche (ANR) Project No. ANR-18-CE31-0006, the Origines, Constituants, et EVolution de l’Univers (OCEVU) Labex (No. ANR-11-LABX-0060), the CNRS IN2P3-Theory/INSU-PNHE-PNCG project “Galactic Dark Matter,” and the European Union’s Horizon 2020 Research and Innovation Program under Marie SkƂodowska-Curie Grant Agreements No. 690575 and No. 674896, in addition to recurrent funding by the Centre National de la Recherche Scientifique (CNRS) and the University of Montpellier. T.L. is supported by the European Union’s Horizon 2020 Research and Innovation Program under the Marie SkƂodowska-Curie grant agreement No. 713366. The work of TL was also supported by the Spanish Agencia Estatal de Investigación through grants PGC2018-095161-B-I00, IFT Centro de Excelencia Severo Ochoa SEV-2016-0597, and Red Consolider MultiDark FPA2017-90566-RED

    Direct constraints on diffusion models from cosmic-ray positron data: Excluding the Minimal model for dark matter searches

    Get PDF
    Galactic Cosmic-ray (CR) transport parameters are usually constrained by the boron-to-carbon ratio. This procedure is generically plagued with degeneracies between the diffusion coefficient and the vertical extent of the Galactic magnetic halo. The latter is of paramount importance for indirect dark matter (DM) searches, because it fixes the amount of DM annihilation or decay that contributes to the local antimatter CR flux. These degeneracies could be broken by using secondary radioactive species, but the current data still have large error bars, and this method is extremely sensitive to the very local interstellar medium (ISM) properties. Here, we propose to use the low-energy CR positrons in the GeV range as another direct constraint on diffusion models. We show that the PAMELA data disfavor small diffusion halo (Lâ‰Č3L\lesssim 3 kpc) and large diffusion slope models, and exclude the minimal ({\em min}) configuration (Maurin et al. 2001, Donato et al. 2004) widely used in the literature to bracket the uncertainties in the DM signal predictions. This is complementary to indirect constraints (diffuse radio and gamma-ray emissions) and has strong impact on DM searches. Indeed this makes the antiproton constraints more robust while enhancing the discovery/exclusion potential of current and future experiments, like AMS-02 and GAPS, especially in the antiproton and antideuteron channels.Comment: 7 pages, 3 figures. V2: minor changes to match to the published version; misprints in Eqs.(4) fixe

    Intermediate Mass Black Holes and Nearby Dark Matter Point Sources: A Critical Reassessment

    Full text link
    The proposal of a galactic population of intermediate mass black holes (IMBHs), forming dark matter (DM) ``mini-spikes'' around them, has received considerable attention in recent years. In fact, leading in some scenarios to large annihilation fluxes in gamma rays, neutrinos and charged cosmic rays, these objects are sometimes quoted as one of the most promising targets for indirect DM searches. In this letter, we apply a detailed statistical analysis to point out that the existing EGRET data already place very stringent limits on those scenarios, making it rather unlikely that any of these objects will be observed with, e.g., the Fermi/GLAST satellite or upcoming Air Cherenkov telescopes. We also demonstrate that prospects for observing signals in neutrinos or charged cosmic rays seem even worse. Finally, we address the question of whether the excess in the cosmic ray positron/electron flux recently reported by PAMELA/ATIC could be due to a nearby DM point source like a DM clump or mini-spike; gamma-ray bounds, as well as the recently released Fermi cosmic ray electron and positron data, again exclude such a possibility for conventional DM candidates, and strongly constrain it for DM purely annihilating into light leptons.Comment: 4 pages revtex4, 4 figures. Improved analysis and discussion, added constraints from Fermi data, corrected figures and updated reference
    • 

    corecore