993 research outputs found

    Unsupervised morphological segmentation for images

    Get PDF
    This paper deals with a morphological approach to unsupervised image segmentation. The proposed technique relies on a multiscale Top-Down approach allowing a hierarchical processing of the data ranging from the most global scale to the most detailed one. At each scale, the algorithm consists of four steps: image simplification, feature extraction, contour localization and quality estimation. The main emphasis of this paper is to discuss the selection of a simplification filter for segmentation. Morphological filters based on reconstruction proved to be very efficient for this purpose. The resulting unsupervised algorithm is very robust and can deal with very different type of images.Peer ReviewedPostprint (published version

    Analysis of video sequences: table of content and index creation

    Get PDF
    This paper deals with the representation of video sequences useful for tasks such as long-term analysis, indexing or browsing. A Table Of Content and index creation algorithm is presented, as well as additional tools involved in their creation. The proposed method does not assume any a priori knowledge about the content or the structure of the video. It is therefore a generic technique. Some examples are presented in order to assess the performance of the algorithmPeer ReviewedPostprint (published version

    Optimum graph cuts for pruning binary partition trees of polarimetric SAR images

    Get PDF
    This paper investigates several optimum graph-cut techniques for pruning binary partition trees (BPTs) and their usefulness for the low-level processing of polarimetric synthetic aperture radar (PolSAR) images. BPTs group pixels to form homogeneous regions, which are hierarchically structured by inclusion in a binary tree. They provide multiple resolutions of description and easy access to subsets of regions. Once constructed, BPTs can be used for a large number of applications. Many of these applications consist in populating the tree with a specific feature and in applying a graph cut called pruning to extract a partition of the space. In this paper, different pruning examples involving the optimization of a global criterion are discussed and analyzed in the context of PolSAR images for segmentation. Through the objective evaluation of the resulting partitions by means of precision-and-recall-for-boundaries curves, the best pruning technique is identified, and the influence of the tree construction on the performances is assessed.Peer ReviewedPostprint (author's final draft

    Robust motion estimation using connected operators

    Get PDF
    This paper discusses the use of connected operators for robust motion estimation The proposed strategy involves a motion estimation step extracting the dominant motion and a ltering step relying on connected operators that remove objects that do not fol low the dominant motion. These two steps are iterated in order to obtain an accurate motion estimation and a precise de nition of the objects fol lowing this motion This strategy can be applied on the entire frame or on individual connected components As a result the complete motion oriented segmentation and motion estimation of the frame can be achievedPeer ReviewedPostprint (published version

    Connected operators based on region-tree pruning strategies

    Get PDF
    This paper discusses region-based representations useful to create connected operators. The filtering approach involves three steps: 1) a region tree representation of the input image is constructed; 2) the simplification is obtained by pruning the tree; and 3) and output image is constructed from the pruned tree. The paper focuses in particular on the pruning strategies that can be used depending of the increasing of the simplification criteria.Peer ReviewedPostprint (published version

    Generalized connected operators

    Get PDF
    This paper deals with the notion of connected operators These operators are becoming popular in image processing because they have the fundamental property of simplifying the signal while preserving the contour information In a rst step we recall the basic notions involved in binary and gray level connected operators. Then we show how one can extend and generalize these operators We focus on two important issues the connectivity and the simplication criterion We will show in particular how to create connectivities that are either more or less strict than the usual ones and how to build new criteriaPeer ReviewedPostprint (published version

    Region based analysis of video sequences with a general merging algorithm

    Get PDF
    Connected operators [4] and Region Growing [2] algorithms have been created in different context and applications. However, they all are based on the same fundamental merging process. This paper discusses the basic issues of the merging algorithm and presents different applications ranging from simple frame segmentation to video sequence analysis.Peer ReviewedPostprint (published version

    The DICEMAN description schemes for still images and video sequences

    Get PDF
    To address the problem of visual content description, two Description Schemes (DSs) developed within the context of a European ACTS project known as DICEMAN, are presented. The DSs, designed based on an analogy with well-known tools for document description, describe both the structure and semantics of still images and video sequences. The overall structure of both DSs including the various sub-DSs and descriptors (Ds) of which they are composed is described. In each case, the hierarchical sub-DS for describing structure can be constructed using automatic (or semi-automatic) image/video analysis tools. The hierarchical sub-DSs for describing the semantics, however, are constructed by a user. The integration of the two DSs into a video indexing application currently under development in DICEMAN is also briefly described.Peer ReviewedPostprint (published version

    Hierarchical morphological segmentation for image sequence coding

    Get PDF
    This paper deals with a hierarchical morphological segmentation algorithm for image sequence coding. Mathematical morphology is very attractive for this purpose because it efficiently deals with geometrical features such as size, shape, contrast, or connectivity that can be considered as segmentation-oriented features. The algorithm follows a top-down procedure. It first takes into account the global information and produces a coarse segmentation, that is, with a small number of regions. Then, the segmentation quality is improved by introducing regions corresponding to more local information. The algorithm, considering sequences as being functions on a 3-D space, directly segments 3-D regions. A 3-D approach is used to get a segmentation that is stable in time and to directly solve the region correspondence problem. Each segmentation stage relies on four basic steps: simplification, marker extraction, decision, and quality estimation. The simplification removes information from the sequence to make it easier to segment. Morphological filters based on partial reconstruction are proven to be very efficient for this purpose, especially in the case of sequences. The marker extraction identifies the presence of homogeneous 3-D regions. It is based on constrained flat region labeling and morphological contrast extraction. The goal of the decision is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a modified watershed algorithm. Finally, the quality estimation concentrates on the coding residue, all the information about the 3-D regions that have not been properly segmented and therefore coded. The procedure allows the introduction of the texture and contour coding schemes within the segmentation algorithm. The coding residue is transmitted to the next segmentation stage to improve the segmentation and coding quality. Finally, segmentation and coding examples are presented to show the validity and interest of the coding approach.Peer ReviewedPostprint (published version

    A Learning Framework for Morphological Operators using Counter-Harmonic Mean

    Full text link
    We present a novel framework for learning morphological operators using counter-harmonic mean. It combines concepts from morphology and convolutional neural networks. A thorough experimental validation analyzes basic morphological operators dilation and erosion, opening and closing, as well as the much more complex top-hat transform, for which we report a real-world application from the steel industry. Using online learning and stochastic gradient descent, our system learns both the structuring element and the composition of operators. It scales well to large datasets and online settings.Comment: Submitted to ISMM'1
    • …
    corecore