2,304 research outputs found

    Revisiting spatial vision: toward a unifying model

    Get PDF
    We report contrast detection, contrast increment, contrast masking, orientation discrimination, and spatial frequency discrimination thresholds for spatially localized stimuli at 4° of eccentricity. Our stimulus geometry emphasizes interactions among overlapping visual filters and differs from that used in previous threshold measurements, which also admits interactions among distant filters. We quantitatively account for all measurements by simulating a small population of overlapping visual filters interacting through divisive inhibition. We depart from previous models of this kind in the parameters of divisive inhibition and in using a statistically efficient decision stage based on Fisher information. The success of this unified account suggests that, contrary to Bowne [Vision Res. 30, 449 (1990)], spatial vision thresholds reflect a single level of processing, perhaps as early as primary visual cortex

    A bottom–up model of spatial attention predicts human error patterns in rapid scene recognition

    Get PDF
    Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom–up visual processing (attentional selection and/or recognition) or top–down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of “surprise” in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences
    corecore