168 research outputs found

    Cleaning sky survey databases using Hough Transform and Renewal String approaches

    Get PDF
    Large astronomical databases obtained from sky surveys such as the SuperCOSMOS Sky Survey (SSS) invariably suffer from spurious records coming from artefactual effects of the telescope, satellites and junk objects in orbit around earth and physical defects on the photographic plate or CCD. Though relatively small in number these spurious records present a significant problem in many situations where they can become a large proportion of the records potentially of interest to a given astronomer. Accurate and robust techniques are needed for locating and flagging such spurious objects, and we are undertaking a programme investigating the use of machine learning techniques in this context. In this paper we focus on the four most common causes of unwanted records in the SSS: satellite or aeroplane tracks, scratches, fibres and other linear phenomena introduced to the plate, circular halos around bright stars due to internal reflections within the telescope and diffraction spikes near to bright stars. Appropriate techniques are developed for the detection of each of these. The methods are applied to the SSS data to develop a dataset of spurious object detections, along with confidence measures, which can allow these unwanted data to be removed from consideration. These methods are general and can be adapted to other astronomical survey data.Comment: Accepted for MNRAS. 17 pages, latex2e, uses mn2e.bst, mn2e.cls, md706.bbl, shortbold.sty (all included). All figures included here as low resolution jpegs. A version of this paper including the figures can be downloaded from http://www.anc.ed.ac.uk/~amos/publications.html and more details on this project can be found at http://www.anc.ed.ac.uk/~amos/sattrackres.htm

    Atlas-based indexing of brain sections via 2-D to 3-D image registration

    Get PDF
    IEEE Transactions on Biomedical Engineering, 55(1): pp. 147-156.A 2-D to 3-D nonlinear intensity-based registration method is proposed in which the alignment of histological brain sections with a volumetric brain atlas is performed. First, sparsely cut brain sections were linearly matched with an oblique slice automatically extracted from the atlas. Second, a planar-to-curved surface alignment was employed in order to match each section with its corresponding image overlaid on a curved-surface within the atlas. For the latter, a PDE-based registration technique was developed that is driven by a local normalized-mutual-information similarity measure. We demonstrate the method and evaluate its performance with simulated and real data experiments. An atlasguided segmentation of mouse brains’ hippocampal complex, retrieved from the Mouse Brain Library (MBL) database, is demonstrated with the proposed algorithm

    Dataset Growth in Medical Image Analysis Research

    No full text
    Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as “data starved”. We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3–10 times from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31% for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed 308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed) and the future MICCAI 2021 conference
    corecore