726 research outputs found

    Multiple Andreev reflections in hybrid multiterminal junctions

    Full text link
    We investigate theoretically charge transport in hybrid multiterminal junctions with superconducting leads kept at different voltages. It is found that multiple Andreev reflections involving several superconducting leads give rise to rich subharmonic gap structures in the current-voltage characteristics. The structures are evidenced numerically in junctions in the incoherent regime.Comment: 5 pages, 3 figure

    Quasiclassical theory of disordered Rashba superconductors

    Full text link
    We derive the quasiclassical equations that describe two-dimensional superconductors with a large Rashba spin-orbit coupling and in the presence of impurities. These equations account for the helical phase induced by an in-plane magnetic field, with a superconducting order parameter that is spatially modulated along a direction perpendicular to the field. We also derive the generalized Ginzburg-Landau functional, which includes a linear-in-gradient term corresponding to the helical phase. This theory paves the way for studies of the proximity effect in two-dimensional electron gases with large spin-orbit coupling.Comment: 6 pages, 1 figur

    Topological Josephson ϕ0{\phi}_0-junctions

    Get PDF
    We study the effect of a magnetic field on the current-phase relation of a topological Josephson junction formed by connecting two superconductors through the helical edge states of a quantum spin-Hall insulator. We predict that the Zeeman effect along the spin quantization axis of the helical edges results in an anomalous Josephson relation that allows for a supercurrent to flow in the absence of superconducting phase bias. We relate the associated field-tunable phase shift ϕ0\phi_0 in the Josephson relation of such a ϕ0\phi_0-junction to the existence of a so-called helical superconductivity, which may result from the interplay of the Zeeman effect and spin-orbit coupling. We analyze the dependence of the magneto-supercurrent on the junction length and discuss its observability in suitably designed hybrid structures subject to an in-plane magnetic field.Comment: 7 pages, 3 figures, Appendix and references adde

    In-plane magnetic field anisotropy of the FFLO state in layered superconductors

    Full text link
    There are strong experimental evidences of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state formation in layered organic superconductors in parallel magnetic field. We study theoretically the interplay between the orbital effect and the FFLO modulation in this case and demonstrate that the in-plane critical field anisotropy drastically changes at the transition to the FFLO state. The very peculiar angular dependence of the superconducting onset temperature which is predicted may serve for unambiguous identification of the FFLO modulation. The obtained results permit us to suggest the modulated phase stabilization as the origin of the magnetic-field angle dependence of the onset of superconductivity experimentally observed in (TMTSF)2_{2}ClO4_{4} organic conductors

    Anomalous Josephson effect in semiconducting nanowires as a signature of the topologically nontrivial phase

    Full text link
    We study Josephson junctions made of semiconducting nanowires with Rashba spin-orbit coupling, where superconducting correlations are induced by the proximity effect. In the presence of a suitably directed magnetic field, the system displays the anomalous Josephson effect: a nonzero supercurrent in the absence of a phase bias between two superconductors. We show that this anomalous current can be increased significantly by tuning the nanowire into the helical regime. In particular, in a short junction, a large anomalous current is a signature for topologically nontrivial superconductivity in the nanowire.Comment: 10 pages, 9 figures; published versio

    Non-equilibrium Josephson effect through helical edge states

    Full text link
    We study Josephson junctions between superconductors connected through the helical edge states of a two-dimensional topological insulator in the presence of a magnetic barrier. As the equilibrium Andreev bound states of the junction are 4Pi-periodic in the superconducting phase difference, it was speculated that, at finite dc bias voltage, the junction exhibits a fractional Josephson effect with half the Josephson frequency. Using the scattering matrix formalism, we show that signatures of this effect can be seen in the finite-frequency current noise. Furthermore, we discuss other manifestations of the Majorana bound states forming at the edges of the superconductors.Comment: 4+ pages, 3 figure
    corecore