139 research outputs found
KIAA0101 Is Overexpressed, and Promotes Growth and Invasion in Adrenal Cancer
Background: KIAA0101 is a proliferating cell nuclear antigen-associated factor that is overexpressed in some human malignancies. Adrenocortical neoplasm is one of the most common human neoplasms for which the molecular causes are poorly understood. Moreover, it is difficult to distinguish between localized benign and malignant adrenocortical tumors. For these reasons, we studied the expression, function and possible mechanism of dysregulation of KIAA0101 in human adrenocortical neoplasm. Methodology/Principal Findings: KIAA0101 mRNA and protein expression levels were determined in 112 adrenocortical tissue samples (21 normal adrenal cortex, 80 benign adrenocortical tumors, and 11 adrenocortical carcinoma (ACC). SiRNA knockdown was used to determine the functional role of KIAA0101 on cell proliferation, cell cycle, apoptosis, soft agar anchorage independent growth and invasion in the ACC cell line, NCI-H295R. In addition, we explored the mechanism of KIAA0101 dysregulation by examining the mutational status. KIAA0101 mRNA (9.7 fold) and protein expression were significantly higher in ACC (p,0.0001). KIAA0101 had sparse protein expression in only a few normal adrenal cortex samples, which was confined to adrenocortical progenitor cells. KIAA0101 expression levels were 84 % accurate for distinguishing between ACC and normal and benign adrenocortical tumor samples. Knockdown of KIAA0101 gene expression significantly decreased anchorage independent growth by 80 % and invasion by 60 % (p = 0.001; p = 0.006). W
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Children with Moderate Acute Malnutrition with No Access to Supplementary Feeding Programmes Experience High Rates of Deterioration and No Improvement: Results from a Prospective Cohort Study in Rural Ethiopia
Background: Children with moderate acute malnutrition (MAM) have an increased risk of mortality, infections and impaired physical and cognitive development compared to well-nourished children. In parts of Ethiopia not considered chronically food insecure there are no supplementary feeding programmes (SFPs) for treating MAM. The short-term outcomes of children who have MAM in such areas are not currently described, and there remains an urgent need for evidence-based policy recommendations.
Methods: We defined MAM as mid-upper arm circumference (MUAC) of ≥11.0cm and <12.5cm with no bilateral pitting oedema to include Ethiopian government and World Health Organisation cut-offs. We prospectively surveyed 884 children aged 6–59 months living with MAM in a rural area of Ethiopia not eligible for a supplementary feeding programme. Weekly home visits were made for seven months (28 weeks), covering the end of peak malnutrition through to the post-harvest period (the most food secure window), collecting anthropometric, socio-demographic and food security data.
Results: By the end of the study follow up, 32.5% (287/884) remained with MAM, 9.3% (82/884) experienced at least one episode of SAM (MUAC <11cm and/or bilateral pitting oedema), and 0.9% (8/884) died. Only 54.2% of the children recovered with no episode of SAM by the end of the study. Of those who developed SAM half still had MAM at the end of the follow up period. The median (interquartile range) time to recovery was 9 (4–15) weeks. Children with the lowest MUAC at enrolment had a significantly higher risk of remaining with MAM and a lower chance of recovering.
Conclusions: Children with MAM during the post-harvest season in an area not eligible for SFP experience an extremely high incidence of SAM and a low recovery rate. Not having a targeted nutrition-specific intervention to address MAM in this context places children with MAM at excessive risk of adverse outcomes. Further preventive and curative approaches should urgently be considered
Technology generation to dissemination:lessons learned from the tef improvement project
Indigenous crops also known as orphan crops are key contributors to food security, which is becoming increasingly vulnerable with the current trend of population growth and climate change. They have the major advantage that they fit well into the general socio-economic and ecological context of developing world agriculture. However, most indigenous crops did not benefit from the Green Revolution, which dramatically increased the yield of major crops such as wheat and rice. Here, we describe the Tef Improvement Project, which employs both conventional- and molecular-breeding techniques to improve tef\u2014an orphan crop important to the food security in the Horn of Africa, a region of the world with recurring devastating famines. We have established an efficient pipeline to bring improved tef lines from the laboratory to the farmers of Ethiopia. Of critical importance to the long-term success of this project is the cooperation among participants in Ethiopia and Switzerland, including donors, policy makers, research institutions, and farmers. Together, European and African scientists have developed a pipeline using breeding and genomic tools to improve the orphan crop tef and bring new cultivars to the farmers in Ethiopia. We highlight a new variety, Tesfa, developed in this pipeline and possessing a novel and desirable combination of traits. Tesfa\u2019s recent approval for release illustrates the success of the project and marks a milestone as it is the first variety (of many in the pipeline) to be released
PIK3CA Mutations Frequently Coexist with RAS and BRAF Mutations in Patients with Advanced Cancers
Oncogenic mutations of PIK3CA, RAS (KRAS, NRAS), and BRAF have been identified in various malignancies, and activate the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, respectively. Both pathways are critical drivers of tumorigenesis.Tumor tissues from 504 patients with diverse cancers referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center starting in October 2008 were analyzed for PIK3CA, RAS (KRAS, NRAS), and BRAF mutations using polymerase chain reaction-based DNA sequencing.PIK3CA mutations were found in 54 (11%) of 504 patients tested; KRAS in 69 (19%) of 367; NRAS in 19 (8%) of 225; and BRAF in 31 (9%) of 361 patients. PIK3CA mutations were most frequent in squamous cervical (5/14, 36%), uterine (7/28, 25%), breast (6/29, 21%), and colorectal cancers (18/105, 17%); KRAS in pancreatic (5/9, 56%), colorectal (49/97, 51%), and uterine cancers (3/20, 15%); NRAS in melanoma (12/40, 30%), and uterine cancer (2/11, 18%); BRAF in melanoma (23/52, 44%), and colorectal cancer (5/88, 6%). Regardless of histology, KRAS mutations were found in 38% of patients with PIK3CA mutations compared to 16% of patients with wild-type (wt)PIK3CA (p = 0.001). In total, RAS (KRAS, NRAS) or BRAF mutations were found in 47% of patients with PIK3CA mutations vs. 24% of patients wtPIK3CA (p = 0.001). PIK3CA mutations were found in 28% of patients with KRAS mutations compared to 10% with wtKRAS (p = 0.001) and in 20% of patients with RAS (KRAS, NRAS) or BRAF mutations compared to 8% with wtRAS (KRAS, NRAS) or wtBRAF (p = 0.001).PIK3CA, RAS (KRAS, NRAS), and BRAF mutations are frequent in diverse tumors. In a wide variety of tumors, PIK3CA mutations coexist with RAS (KRAS, NRAS) and BRAF mutations
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background
Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.
Methods
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.
Findings
The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.
Interpretation
Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
- …