66 research outputs found

    The Heart of 25 by 25: Achieving the Goal of Reducing Global and Regional Premature Deaths From Cardiovascular Diseases and Stroke: A Modeling Study From the American Heart Association and World Heart Federation.

    Get PDF
    : In 2011, the United Nations set key targets to reach by 2025 to reduce the risk of premature noncommunicable disease death by 25% by 2025. With cardiovascular disease being the largest contributor to global mortality, accounting for nearly half of the 36 million annual noncommunicable disease deaths, achieving the 2025 goal requires that cardiovascular disease and its risk factors be aggressively addressed. The Global Cardiovascular Disease Taskforce, comprising the World Heart Federation, American Heart Association, American College of Cardiology Foundation, European Heart Network, and European Society of Cardiology, with expanded representation from Asia, Africa, and Latin America, along with global cardiovascular disease experts, disseminates information and approaches to reach the United Nations 2025 targets. The writing committee, which reflects Global Cardiovascular Disease Taskforce membership, engaged the Institute for Health Metrics and Evaluation, University of Washington, to develop region-specific estimates of premature cardiovascular mortality in 2025 based on various scenarios. Results show that &gt;5 million premature CVD deaths among men and 2.8 million among women are projected worldwide by 2025, which can be reduced to 3.5 million and 2.2 million, respectively, if risk factor targets for blood pressure, tobacco use, diabetes mellitus, and obesity are achieved. However, global risk factor targets have various effects, depending on region. For most regions, United Nations targets for reducing systolic blood pressure and tobacco use have more substantial effects on future scenarios compared with maintaining current levels of body mass index and fasting plasma glucose. However, preventing increases in body mass index has the largest effect in some high-income countries. An approach achieving reductions in multiple risk factors has the largest impact for almost all regions. Achieving these goals can be accomplished only if countries set priorities, implement cost-effective population wide strategies, and collaborate in public-private partnerships across multiple sectors.<br/

    Effects of the Training Dataset Characteristics on the Performance of Nine Species Distribution Models: Application to Diabrotica virgifera virgifera

    Get PDF
    Many distribution models developed to predict the presence/absence of invasive alien species need to be fitted to a training dataset before practical use. The training dataset is characterized by the number of recorded presences/absences and by their geographical locations. The aim of this paper is to study the effect of the training dataset characteristics on model performance and to compare the relative importance of three factors influencing model predictive capability; size of training dataset, stage of the biological invasion, and choice of input variables. Nine models were assessed for their ability to predict the distribution of the western corn rootworm, Diabrotica virgifera virgifera, a major pest of corn in North America that has recently invaded Europe. Twenty-six training datasets of various sizes (from 10 to 428 presence records) corresponding to two different stages of invasion (1955 and 1980) and three sets of input bioclimatic variables (19 variables, six variables selected using information on insect biology, and three linear combinations of 19 variables derived from Principal Component Analysis) were considered. The models were fitted to each training dataset in turn and their performance was assessed using independent data from North America and Europe. The models were ranked according to the area under the Receiver Operating Characteristic curve and the likelihood ratio. Model performance was highly sensitive to the geographical area used for calibration; most of the models performed poorly when fitted to a restricted area corresponding to an early stage of the invasion. Our results also showed that Principal Component Analysis was useful in reducing the number of model input variables for the models that performed poorly with 19 input variables. DOMAIN, Environmental Distance, MAXENT, and Envelope Score were the most accurate models but all the models tested in this study led to a substantial rate of mis-classification

    A Battle Lost? Report on Two Centuries of Invasion and Management of Lantana camara L. in Australia, India and South Africa

    Get PDF
    Recent discussion on invasive species has invigorated the debate on strategies to manage these species. Lantana camara L., a shrub native to the American tropics, has become one of the worst weeds in recorded history. In Australia, India and South Africa, Lantana has become very widespread occupying millions of hectares of land. Here, we examine historical records to reconstruct invasion and management of Lantana over two centuries and ask: Can we fight the spread of invasive species or do we need to develop strategies for their adaptive management? We carried out extensive research of historical records constituting over 75% of records on invasion and management of this species in the three countries. The records indicate that governments in Australia, India and South Africa have taken aggressive measures to eradicate Lantana over the last two centuries, but these efforts have been largely unsuccessful. We found that despite control measures, the invasion trajectory of Lantana has continued upwards and that post-war land-use change might have been a possible trigger for this spread. A large majority of studies on invasive species address timescales of less than one year; and even fewer address timescales of >10 years. An understanding of species invasions over long time-scales is of paramount importance. While archival records may give only a partial picture of the spread and management of invasive species, in the absence of any other long-term dataset on the ecology of Lantana, our study provides an important insight into its invasion, spread and management over two centuries and across three continents. While the established paradigm is to expend available resources on attempting to eradicate invasive species, our findings suggest that in the future, conservationists will need to develop strategies for their adaptive management rather than fighting a losing battle

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Grazing effects on microbial community composition, growth and nutrient cycling in salt marsh and sand dune grasslands

    Get PDF
    The effect of grazing by large herbivores on the microbial community and the ecosystem functions they provide are relatively unknown in grassland systems. In this study, the impact of grazing upon the size, composition and activity of the soil microbial community was measured in field experiments in two coastal ecosystems: one salt marsh and one sand dune grassland. Bacterial, fungal and total microbial biomass were not systematically affected by grazing across ecosystems, although, within an ecosystem, differences could be detected. Fungal-to-bacterial ratio did not differ with grazing for either habitat. Redundancy analysis showed that soil moisture, bulk density and root biomass significantly explained the composition of phospholipid fatty acid (PLFA) markers, dominated by the distinction between the two grassland habitats, but where the grazing effect could also be resolved. PLFA markers for Gram-positive bacteria were more proportionally abundant in un-grazed, and markers for Gram-negative bacteria in grazed grasslands. Bacterial growth rate (leucine incorporation) was highest in un-grazed salt marsh but did not vary with grazing intensity in the sand dune grassland. We conclude that grazing consistently affects the composition of the soil microbial community in seminatural grasslands but that its influence is small (7 % of the total variation in PLFA composition), compared with differences between grassland types (89 %). The relatively small effect of grazing translated to small effects on measurements of soil microbial functions, including N and C mineralisation. This study is an early step toward assessing consequences of land-use change for global nutrient cycles driven by the microbial community
    corecore