11 research outputs found

    Inhaled nitric oxide improves transpulmonary blood flow and clinical outcomes after prolonged cardiac arrest: a large animal study

    Get PDF
    Introduction: The probability to achieve a return of spontaneous circulation (ROSC) after cardiac arrest can be improved by optimizing circulation during cardiopulomonary resuscitation using a percutaneous left ventricular assist device (iCPR). Inhaled nitric oxide may facilitate transpulmonary blood flow during iCPR and may therefore improve organ perfusion and outcome. Methods: Ventricular fibrillation was electrically induced in 20 anesthetized male pigs. Animals were left untreated for 10 minutes before iCPR was attempted. Subjects received either 20 ppm of inhaled nitric oxide (iNO, n = 10) or 0 ppm iNO (Control, n = 10), simultaneously started with iCPR until 5 hours following ROSC. Animals were weaned from the respirator and followed up for five days using overall performance categories (OPC) and a spatial memory task. On day six, all animals were anesthetized again, and brains were harvested for neurohistopathologic evaluation. Results: All animals in both groups achieved ROSC. Administration of iNO markedly increased iCPR flow during CPR (iNO: 1.81 ± 0.30 vs Control: 1.64 ± 0.51 L/min, p < 0.001), leading to significantly higher coronary perfusion pressure (CPP) during the 6 minutes of CPR (25 ± 13 vs 16 ± 6 mmHg, p = 0.002). iNO-treated animals showed significantly lower S-100 serum levels thirty minutes post ROSC (0.26 ± 0.09 vs 0.38 ± 0.15 ng/mL, p = 0.048), as well as lower blood glucose levels 120–360 minutes following ROSC. Lower S-100 serum levels were reflected by superior clinical outcome of iNO-treated animals as estimated with OPC (3 ± 2 vs. 5 ± 1, p = 0.036 on days 3 to 5). Three out of ten iNO-treated, but none of the Control animals were able to successfully participate in the spatial memory task. Neurohistopathological examination of vulnerable cerebral structures revealed a trend towards less cerebral lesions in neocortex, archicortex, and striatum in iNO-treated animals compared to Controls. Conclusions: In pigs resuscitated with mechanically-assisted CPR from prolonged cardiac arrest, the administration of 20 ppm iNO during and following iCPR improved transpulmonary blood flow, leading to improved clinical neurological outcomes

    Immune-mediated neuropathy related to bortezomib in a patient with multiple myeloma

    No full text
    Treatment options in multiple myeloma (MM) based on novel agents are often limited by dose-related neurotoxicity. Bortezomib, a highly active reversible proteasome inhibitor, frequently causes peripheral neuropathy (PN). Bortezomib-induced PN (BIPN) is characterized by a length-dependent, sensory, axonal polyneuropathy (PNP) with predominant small fiber-affection. Following dose reduction or drug discontinuation, BIPN resolves within 3-4 months in the majority of patients. The pathophysiological mechanisms of BIPN are unclear. Rare cases of a severe demyelinating or mixed BIPN with prominent motor involvement have been attributed to autoimmune or inflammatory reactions. A case report, including nerve pathology, is presented of a 59-year-old man with stage III IgG-&kappa; MM who was treated with bortezomib on the occurrence of progressive disease. After the fourth cycle, he developed a painful distal symmetric sensory PNP followed by gait instability and muscle weakness increasing over 3 months despite early cessation of bortezomib.Neurological examination revealed a distal flaccid tetraparesis mainly of the lower limbs with sensory loss and severe ataxia, electrophysiological features of a mixed axonal-demyelinating PNP, and pathomorphological evidence of neuritis. Steroid treatment was initiated, and partial recovery of the neurological symptoms within 6 months was observed. While a neurotoxic effect may explain the initial distal sensory disturbances, the worsening of neurological dysfunction after bortezomib withdrawal and the clinical pattern with steroid-responsive muscle weakness predominantly of the legs are consistent with an immune-mediated mechanism. This is in line with the sural nerve biopsy findings. Toxic BIPN followed by an immune-mediated BIPN in the same patient has not been reported before

    Aggregates of RNA Binding Proteins and ER Chaperones Linked to Exosomes in Granulovacuolar Degeneration of the Alzheimer's Disease Brain

    No full text
    Granulovacuolar degeneration (GVD) occurs in Alzheimer's disease (AD) brain due to compromised autophagy. Endoplasmic reticulum (ER) function and RNA binding protein (RBP) homeostasis regulate autophagy. We observed that the ER chaperones Glucose - regulated protein, 78 KDa (GRP78/BiP), Sigma receptor 1 (SigR1), and Vesicle-associated membrane protein associated protein B (VAPB) were elevated in many AD patients' subicular neurons. However, those neurons which were affected by GVD showed lower chaperone levels, and there was only minor co-localization of chaperones with GVD bodies (GVBs), suggesting that neurons lacking sufficient chaperone-mediated proteo stasis enter the GVD pathway. Consistent with this notion, granular, incipient pTau aggregates in human AD and pR5 tau transgenic mouse neurons were regularly co-localized with increased chaperone immunoreactivity, whereas neurons with mature neurofibrillary tangles lacked both the chaperone buildup and significant GVD. On the other hand, APP/PS1 (APPswe/PSEN1dE9) transgenic mouse hippocampal neurons that are devoid of pTau accumulation displayed only few GVBs-like vesicles, which were still accompanied by prominent chaperone buildup. Identifying a potential trigger for GVD, we found cytoplasmic accumulations of RBPs including Matrin 3 and FUS as well as stress granules in GVBs of AD patient and pR5 mouse neurons. Interestingly, we observed that GVBs containing aggregated pTau and pTDP-43 were consistently co-localized with the exosomal marker Flotillin 1 in both AD and pR5 mice. In contrast, intraneuronal 82E1-immunoreactive amyloid-beta in human AD and APP/PS1 mice only rarely co-localized with Flotillin 1-positive exosomal vesicles. We conclude that altered chaperone-mediated ER protein homeostasis and impaired autophagy manifesting in GVD are linked to both pTau and RBP accumulation and that some GVBs might be targeted to exocytosis

    Aggregates of RNA Binding Proteins and ER Chaperones Linked to Exosomes in Granulovacuolar Degeneration of the Alzheimer's Disease Brain

    No full text
    Granulovacuolar degeneration (GVD) occurs in Alzheimer's disease (AD) brain due to compromised autophagy. Endoplasmic reticulum (ER) function and RNA binding protein (RBP) homeostasis regulate autophagy. We observed that the ER chaperones Glucose - regulated protein, 78 KDa (GRP78/BiP), Sigma receptor 1 (SigR1), and Vesicle-associated membrane protein associated protein B (VAPB) were elevated in many AD patients' subicular neurons. However, those neurons which were affected by GVD showed lower chaperone levels, and there was only minor co-localization of chaperones with GVD bodies (GVBs), suggesting that neurons lacking sufficient chaperone-mediated proteo stasis enter the GVD pathway. Consistent with this notion, granular, incipient pTau aggregates in human AD and pR5 tau transgenic mouse neurons were regularly co-localized with increased chaperone immunoreactivity, whereas neurons with mature neurofibrillary tangles lacked both the chaperone buildup and significant GVD. On the other hand, APP/PS1 (APPswe/PSEN1dE9) transgenic mouse hippocampal neurons that are devoid of pTau accumulation displayed only few GVBs-like vesicles, which were still accompanied by prominent chaperone buildup. Identifying a potential trigger for GVD, we found cytoplasmic accumulations of RBPs including Matrin 3 and FUS as well as stress granules in GVBs of AD patient and pR5 mouse neurons. Interestingly, we observed that GVBs containing aggregated pTau and pTDP-43 were consistently co-localized with the exosomal marker Flotillin 1 in both AD and pR5 mice. In contrast, intraneuronal 82E1-immunoreactive amyloid-beta in human AD and APP/PS1 mice only rarely co-localized with Flotillin 1-positive exosomal vesicles. We conclude that altered chaperone-mediated ER protein homeostasis and impaired autophagy manifesting in GVD are linked to both pTau and RBP accumulation and that some GVBs might be targeted to exocytosis

    ADVERSE CARDIOVASCULAR EFFECTS OF NON-CARDIOVASCULAR DRUGS

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore