52,596 research outputs found

    The Classical Complexity of Boson Sampling

    Get PDF
    We study the classical complexity of the exact Boson Sampling problem where the objective is to produce provably correct random samples from a particular quantum mechanical distribution. The computational framework was proposed by Aaronson and Arkhipov in 2011 as an attainable demonstration of `quantum supremacy', that is a practical quantum computing experiment able to produce output at a speed beyond the reach of classical (that is non-quantum) computer hardware. Since its introduction Boson Sampling has been the subject of intense international research in the world of quantum computing. On the face of it, the problem is challenging for classical computation. Aaronson and Arkhipov show that exact Boson Sampling is not efficiently solvable by a classical computer unless P#P=BPPNPP^{\#P} = BPP^{NP} and the polynomial hierarchy collapses to the third level. The fastest known exact classical algorithm for the standard Boson Sampling problem takes O((m+n1n)n2n)O({m + n -1 \choose n} n 2^n ) time to produce samples for a system with input size nn and mm output modes, making it infeasible for anything but the smallest values of nn and mm. We give an algorithm that is much faster, running in O(n2n+poly(m,n))O(n 2^n + \operatorname{poly}(m,n)) time and O(m)O(m) additional space. The algorithm is simple to implement and has low constant factor overheads. As a consequence our classical algorithm is able to solve the exact Boson Sampling problem for system sizes far beyond current photonic quantum computing experimentation, thereby significantly reducing the likelihood of achieving near-term quantum supremacy in the context of Boson Sampling.Comment: 15 pages. To appear in SODA '1

    Foreword

    Get PDF

    Whether the time is favourable or unfavourable

    Get PDF
    Lk 18:1-8

    Disney Buyout

    Get PDF
    Disney Buyout A man listens to the radio to find out that the White House has been bought out by Disney. *Edited/adapted for the performance by Tim Brown and Thomas Edward
    corecore