94 research outputs found

    A Hybrid High-Order method for nonlinear elasticity

    Full text link
    In this work we propose and analyze a novel Hybrid High-Order discretization of a class of (linear and) nonlinear elasticity models in the small deformation regime which are of common use in solid mechanics. The proposed method is valid in two and three space dimensions, it supports general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary approximation order, and the resolution cost can be reduced by statically condensing a large subset of the unknowns for linearized versions of the problem. Additionally, the method satisfies a local principle of virtual work inside each mesh element, with interface tractions that obey the law of action and reaction. A complete analysis covering very general stress-strain laws is carried out, and optimal error estimates are proved. Extensive numerical validation on model test problems is also provided on two types of nonlinear models.Comment: 29 pages, 7 figures, 4 table

    Comparaison de différentes techniques d'approximation de séries temporelles incertaines issues d'écoulements océaniques

    Get PDF
    International audienceThe analysis of time series is a fundamental task in many flow simulations such as oceanic and atmospheric flows. A major challenge is the construction of a faithful and accurate time-dependent surrogate with a manageable number of samples. Several techniques have been tested to handle the time-dependent aspects of the surrogate including a direct approach, low-rank decomposition, auto-regressive model and global Bayesian emulators. These techniques rely on two popular methods for uncertainty quantification, namely Polynomial chaos expansion and Gaussian processes regression. The different techniques were tested and compared on the uncertain evolution of the sea surface height forecast at two location exhibiting different levels of variance. Two ensembles sizes were considered as well as two versions of polynomial chaos (ordinary least squares or ridge regression) and Gaussian processes (exponential or Matern covariance function) to assess their impact on the results. Our conclusions focus on the advantages and the drawbacks, in terms of accuracy, flexibility and computational costs of the different techniques

    Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods

    Get PDF
    In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partial differential system and establish its well-posedness. We then discuss the approximation of the parameter-dependent problem by non-intrusive techniques based on Polynomial Chaos decompositions. We specifically focus on sparse spectral projection methods, which essentially amount to performing an ensemble of deterministic model simulations to estimate the expansion coefficients. The deterministic solver is based on a Hybrid High-Order discretization supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the probability error of the Polynomial Chaos approximation with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem.Comment: 30 pages, 15 Figure

    Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows

    Get PDF
    Robust and accurate schemes are designed to simulate the coupling between subsurface and overland flows. The coupling conditions at the interface enforce the continuity of both the normal flux and the pressure. Richards' equation governing the subsurface flow is discretized using a Backward Differentiation Formula and a symmetric interior penalty Discontinuous Galerkin method. The kinematic wave equation governing the overland flow is discretized using a Godunov scheme. Both schemes individually are mass conservative and can be used within single-step or multi-step coupling algorithms that ensure overall mass conservation owing to a specific design of the interface fluxes in the multi-step case. Numerical results are presented to illustrate the performances of the proposed algorithms

    Study of overland flow with uncertain infiltration using stochastic tools

    Get PDF
    The saturated hydraulic conductivity is one of the key parameters in the modelling of overland flow water fluxes. In this study, this parameter is defined as a stochastic parameter, idealized as a piecewise constant random field with uniform distribution. This paper aims at investigating the effects of the spatial and temporal scales in uncertainty propagation within overland flow models, and at identifying the localization of the most influential saturated hydraulic conductivity using sensitivity analysis. The results show that the influence of saturated hydraulic conductivity depends on the soil saturation and its spatial localization. For instance, in case of low saturated soils, the most influent parameter is the one located downslope, whereas in case of high saturated soils, the most influent one is either the most infiltrating or the intermediate one. The results indicate where efforts should be concentrate when collecting input parameters to reduce modelling uncertainties

    Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods

    Get PDF
    In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partial differential system and establish its well-posedness. We then discuss the approximation of the parameter-dependent problem by non-intrusive techniques based on Polynomial Chaos decompositions. We specifically focus on sparse spectral projection methods, which essentially amount to performing an ensemble of deterministic model simulations to estimate the expansion coefficients. The deterministic solver is based on a Hybrid High-Order discretization supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the probability error of the Polynomial Chaos approximation with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem

    A review of physically based models for soil erosion by water

    Get PDF
    International audiencePhysically-based models rely on fundamental physical equations describing stream flow and sediment and associated nutrient generation in a catchment. This paper reviews several existing erosion and sediment transport approaches. The process of erosion include soil detachment, transport and deposition, we present various forms of equations and empirical formulas used when modelling and quantifying each of these processes. In particular, we detail models describing rainfall and infiltration effects and the system of equations to describe the overland flow and the evolution of the topography. We also present the formulas for the flow transport capacity and the erodibility functions. Finally, we present some recent numerical schemes to approach the shallow water equations and it's coupling with infiltration and erosion source terms

    Stochastic process design kits for photonic circuits based on polynomial chaos augmented macro-modelling

    Get PDF
    Fabrication tolerances can significantly degrade the performance of fabricated photonic circuits and process yield. It is essential to include these stochastic uncertainties in the design phase in order to predict the statistical behaviour of a device before the final fabrication. This paper presents a method to build a novel class of stochastic-based building blocks for the preparation of Process Design Kits for the analysis and design of photonic circuits. The proposed design kits directly store the information on the stochastic behaviour of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using these macro-models, only a single deterministic simulation is required to compute the stochastic moments of any arbitrary photonic circuit, without the need of running a large number of time-consuming circuit simulations thereby dramatically improving simulation efficiency. The effectiveness of the proposed approach is verified by means of classical photonic circuit examples with multiple uncertain variables

    Inverse modeling of geochemical and mechanical compaction in sedimentary basins through Polynomial Chaos Expansion

    Get PDF
    We present an inverse modeling procedure for the estimation of model parameters of sedi- mentary basins subject to compaction driven by mechanical and geochemical processes. We consider a sandstone basin whose dynamics are governed by a set of unknown key quantities. These include geophys- ical and geochemical system attributes as well as pressure and temperature boundary conditions. We derive a reduced (or surrogate) model of the system behavior based on generalized Polynomial Chaos Expansion (gPCE) approximations, which are directly linked to the variance-based Sobol indices associated with the selected uncertain model parameters. Parameter estimation is then performed within a Maximum Likeli- hood (ML) framework. We then study the way the ML inversion procedure can benefit from the adoption of anisotropic polynomial approximations (a-gPCE) in which the surrogate model is refined only with respect to selected parameters according to an analysis of the nonlinearity of the input-output mapping, as quanti- fied through the Sobol sensitivity indices. Results are illustrated for a one-dimensional setting involving quartz cementation and mechanical compaction in sandstones. The reliability of gPCE and a-gPCE approxi- mations in the context of the inverse modeling framework is assessed. The effects of (a) the strategy employed to build the surrogate model, leading either to a gPCE or a-gPCE representation, and (b) the type and quality of calibration data on the goodness of the parameter estimates is then explored
    corecore