35 research outputs found

    The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat

    Get PDF
    The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0–2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m−2 in summer and autumn, and 2.7 individuals m−2 in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0–2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0–2 m layer were higher than corresponding values from the 0–200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0–200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era

    Strength cues and blocking at test promote reliable within-list criterion shifts in recognition memory

    No full text
    In seven experiments, we explored the potential for strength-based, within-list criterion shifts in recognition memory. People studied a mix of target words, some presented four times (strong) and others studied once (weak). In Experiments 1, 2, 4A, and 4B, the test was organized into alternating blocks of 10, 20, or 40 trials. Each block contained lures intermixed with strong targets only or weak targets only. In strength-cued conditions, test probes appeared in a unique font color for strong and weak blocks. In the uncued conditions of Experiments 1 and 2, similar strength blocks were tested, but strength was not cued with font color. False alarms to lures were lower in blocks containing strong target words, as compared with lures in blocks containing weak targets, but only when strength was cued with font color. Providing test feedback in Experiment 2 did not alter these results. In Experiments 3A-3C, test items were presented in a random order (i.e., not blocked by strength). Of these three experiments, only one demonstrated a significant shift even though strength cues were provided. Overall, the criterion shift was larger and more reliable as block size increased, and the shift occurred only when strength was cued with font color. These results clarify the factors that affect participants\u27 willingness to change their response criterion within a test list

    Attunement to haptic information helps skilled performers select implements for striking a ball in cricket

    Get PDF
    This study examined the perceptual attunement of relatively skilled individuals to the physical properties of striking implements in the sport of cricket. We also sought to assess whether utilizing bats with different physical properties would influence performance of a specific striking action: the front foot straight drive. Eleven skilled male cricketers (mean age = 16.6 ± 0.3 years) from an elite school cricket development program consented to participate in the study. While blindfolded, participants wielded six bats exhibiting different mass and moment of inertia (MOI) characteristics and were asked to identify the three bats they preferred the most for hitting a ball to a maximum distance by performing a front foot straight drive (a common shot in cricket). Next, participants actually attempted to hit balls projected from a ball machine using each of the six bat configurations to enable kinematic analysis of front foot straight drive performance with each implement. Results revealed that, on first choice, the two bats with the smallest mass and MOI values (1 and 2) were most preferred by almost two thirds (63.7 %) of the participants. Kinematic analysis of movement patterns revealed that bat velocity, step length, and bat-ball contact position measures significantly differed between bats. Data revealed how skilled youth cricketers were attuned to the different bat characteristics and harnessed movement system degeneracy to perform this complex interceptive action
    corecore