63 research outputs found

    Variation in gas chromatography (GC) analysis in setting up laboratory protocols for waste to energy novel fixed bed reactor setups

    Full text link
    Gas Chromatography coupled with Mass Spectrometry (GC/MS) has been applied in various analytical chemistry works. However, to fine tune a system that can serve the purposes of pyrolysis oil identification has proven to be a laborious effort, especially when considering the fact that no standard protocol exists for such analysis. In addition, obtained products were yielded from a newly commissioned unit with a unique and novel design. In this study, a US patent office claimed reactor [SULTAN-1, Pyrolysis Reactor System for the Conversion and Analysis of Organic Solid Waste, Patent application number: 15,487,351] that degrades polyolefinc virgin and waste materials to obtain petroleum refinery and petrochemical feedstock, has been commissioned. The reactor produces three distinct physical states of matter products accumulated as testing specimens, i.e. solids, gaseous and oil. The samples analysed in this work were of the gas and oil produced by pyrolysis of end of life tyre (ELTs) shavings that required to have a special recipe to work with in the laboratory. Various MS cords were utilised and experimental setups to fine tune the process, and special emphasis was given on the gas samples variation in this communication. To reach the desired analysis results with high repeatability, a plethora of experiences of lab personnel and laboratory-based experimental work was accumulated. Laboratory protocols were also setup for this work. These will be detailed along the process execution which yielded a standard laboratory best practice analytical method as part of the State of Kuwait newly initiated Government Initiative project

    Discrepancy in the Critical State Void Ratio of Poorly Graded Sand due to Shear Strain Localization

    Get PDF
    The critical state (CS) concept is a theoretical framework that models the constitutive behavior of soils, including sand and other granular materials. It supports the notion of a unique postfailure state, where the soil ultimately experiences continuous shearing with no change in the plastic volumetric strain. However, the published literature has frequently noted the nonconvergence of sand specimens with different initial densities to a unique CS in the compression plane due to many factors such as specimen fabric, particle morphology, breakage, and grain size distribution. This paper examines the CS for poorly graded (uniform) glass beads and 3 different types of silica sands using 50 conventional triaxial compression (CTC) experiments, 12 oedometer tests, and in situ synchrotron microcomputed tomography (SMT) scans for 10 CTC experiments. The results of the 50 CTC experiments revealed a diffused CS zone in the compression plane, which was further examined using the in situ SMT scans. A thorough three-dimensional image analysis of the SMT scans accurately quantified the evolution of the local void ratio (elocal ) versus axial compression within zones of intensive shearing toward the center of the specimen. The evolution of the void ratio was also measured using the entire volume of the specimen (eglobal ). At the CS, the elocal/eglobal ratio was assessed to be ∼1.25 when a single shear band developed within the scanned specimens and ∼1.1–1.15 for specimens that failed via external bulging that was internally manifested by the development of multiple shear bands. This finding suggests that the CS zone in the compression plane can be attributed to the common wrong consideration of eglobal evolution in lieu of elocal within the developing shear bands. Furthermore, the lack of shear band development in uniaxial compression has made the results of the oedometer test reliable in quantifying the CS parameters in the compression plane.This material was partially funded by the US National Science Foundation (NSF) under Grant CMMI-1266230. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the NSF. The SMT scans presented in this paper were collected using the X-Ray Operations and Research Beamline Station 13-BMD of the Advanced Photon Source (APS), a US Department of Energy (DOE) Office of Science User Facility operated by the Argonne National Laboratory (ANL) under Contract DE-AC02-06CH11357. We acknowledge the support of GeoSoilEnviroCARS (Sector 13), which is funded by the NSF Earth Sciences (EAR-1128799), and the DOE Geosciences (DE-FG02-94ER14466). We thank Dr. Mark Rivers for his guidance at APS.Scopu

    Perceptions of Assistant Principals’ and Principals’ of Bahrain Government Schools about the Impact of the Bahrain Teachers College Educational Leadership Program on Their Performance

    Get PDF
    This article examines the perceptions of school assistant principals and principals who completed the Bahrain Teachers College higher diploma of education leadership program about its impact on their performance. The study sample consisted of 141 program graduates from 9- cohorts. A multilevel concept in measuring the impact of the educational leadership program on the graduates’ performance was employed. The framework consisted of 4 levels: self-learning, changing others, embedding changes in school practices and sustainability of change and scaling up the school performance. The study questionnaire was designed on the basis of this framework. Results show that the Educational Leadership program positively affected its graduates’ performance in the 4 levels. The majority of the program graduates agreed that the program positively affected their personal qualities, leadership styles and practices to support school development, school staff, students’ performance and school ranking. The majority of the program graduates also agreed that the program positively affected their skills in dealing with curriculum innovations, professional development, research, strategic planning, staff appraisal, communication with community, using ICT, improving students’ learning and applying educational ethics.     Keywords: Education Leadership, School Principals’ Performance, Leadership Styles, School Practices, Leadership Skill

    Selecting Wavelet Transforms Model in Forecasting Financial Time Series Data Based on ARIMA Model

    Get PDF
    Abstract Recently, wavelet transforms have gained very high attention in many fields and applications such as physics, engineering, signal processing, applied mathematics and statistics. In this paper, we present the advantage of wavelet transforms in forecasting financial time series data. Amman stock market (Jordan) was selected as a tool to show the ability of wavelet transform in forecasting financial time series, experimentally. This article suggests a novel technique for forecasting the financial time series data, based on Wavelet transforms and ARIMA model. Daily return data from 1993 until 2009 is used for this study. 316 S. Al Wadi et a

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    COVID-19 Vaccination Among Diverse Population Groups in the Northern Governorates of Iraq

    Get PDF
    Objectives: The present study was carried out to investigate COVID-19 vaccination coverage among populations of internally displaced persons (IDPs), refugees, and host communities in northern Iraq and the related underlying factors.Methods: Through a cross-sectional study conducted in five governorates in April–May 2022, 4,564 individuals were surveyed. Data were collected through an adapted questionnaire designed to gather data on participants.Results: 4,564 subjects were included (59.55% were 19–45 years old; 54.51% male). 50.48% of the participants (51.49% of host communities, 48.83% of IDPs, and 45.87% of refugees) had been vaccinated with at least one dose of COVID-19 vaccine. 40.84% of participants (42.28% of host communities, 35.75% of IDPs, and 36.14% of refugees) had been vaccinated by two doses, and 1.56% (1.65% of host communities, 0.93% of IDPs, and 1.46% of refugees) were vaccinated with three doses.Conclusion: Sociodemographic factors including age, gender, education, occupation, and nationality could affect vaccination coverage. Moreover, higher acceptance rate of vaccination is associated with belief in vaccine safety and effectiveness and trust in the ability of the vaccine to prevent complications

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore