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Abstract 
 

Recently, wavelet transforms have gained very high attention in many fields 
and applications such as physics, engineering, signal processing, applied 
mathematics and statistics. In this paper, we present the advantage of wavelet 
transforms in forecasting financial time series data. Amman stock market 
(Jordan) was selected as a tool to show the ability of wavelet transform in 
forecasting financial time series, experimentally. This article suggests a novel 
technique for forecasting the financial time series data, based on Wavelet 
transforms and ARIMA model. Daily return data from 1993 until 2009 is used 
for this study. 
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1 Introduction 
 
Time series forecasting is very popular in many fields such as economics, 
statistics, etc. In recent years, stock markets forecasting is required for the 
investors and it has got very high attention in financial time series and 
financial researchers. The accurate forecasting of financial prices is an 
important issue in investment decision making. However, financial time series 
data appears noisy and non-stationary [17,10]. The noise characteristic 
indicates the unavailability of complete information from past behavior of 
financial markets to fully capture the dependency between future and past 
prices. The information that is excluded in the forecasting model is considered 
as noise while the non-stationary characteristic indicates the distribution of 
financial time series changing over time. Therefore, financial time series 
forecasting is considered as one of the most challenging tasks of time series 
analysis. 
There are many forecasting models that have been used in the forecasting 
literature, such as; simple moving average, linear regression, neural network, 
ARMA model and ARIMA model. In order to provide estimates for the future, 
these models analyze the historical data. Usually time series are not 
deterministic series. In fact, in many cases the researchers considered the 
series to be stationary time series. One way to model any time series is to 
consider it as a deterministic function plus white noise. The white noise in any 
time series process can be minimized by some procedures which are called the 
de-noising. Then a better model can be obtained. Consequently, to obtain a 
good de-noising, there are some mathematical models that can be applied such 
as Fourier transform and Wavelet transform.  
Wavelet transforms have been used in many fields of mathematical forecasting, 
[15] in 2008 Sanjeev Kumar et al. decomposed the historical price data into 
wavelet domain constitutive sub series using wavelet transform, and then 
combined with the other time domain variables to perform the set of input 
variables for the proposed forecasting model. Based on statistical analysis the 
behavior of the wavelet domain constitutive series has been studied. It has 
been observed that forecasting accuracy can be improved by the use of 
wavelet transforms in a forecasting model. Rumaih M. and Mohammad A., in 
2002[14] used Saudi stock index to illustrate that wavelet transform is better 
than the other forecasting technique in predicting the de-noising of the 
financial time series.  Aggarwal et al., 2008 [9] suggested that Forecasting 
performance of the wavelet transforms based mixed model has been compared 
with the other three models. The proposed model was found to be better. 
Performance evaluation for different wavelets were performed, and it has been 
observed that for improving forecasting accuracy using WT, Daubechies  
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wavelet of order two, gives the best performance. 
The fundamental and novel contribution of the paper is to use the wavelet 
transform, to decompose the return Amman stock market into a set of 
better-behaved approximation series.  The forecasting results based on 
wavelet transform and ARIMA model will compare with the forecasting 
values based on ARIMA model by using some statistical criteria. MATLAB 
2008a and SAS 9.1 programs have been used to get significant results and fair 
comparison.       
This paper is organized as follows. The next section describes the principle of 
the mathematical framework. Section 3 provides a description of data set. 
Section 4 provides the methodology. In Section 5 the experimental results are 
presented to demonstrate the effectiveness of wavelet transform in the 
forecasting methods. In Section 6 we summarize our contributions and 
mention the conclusion. And finally we mention the acknowledgement.   
  
 
2 Mathematical Frameworks 
 
2.1 Wavelet Analysis 
Wavelet analysis is a mathematical model that transforms the original signal 
(especially with time domain) into a different domain for analysis and 
processing [18,22, 27]. This model is very suitable with the non-stationary 
data, i.e. mean and autocorrelation of the signal are not constant over time, 
that is well know, most of the financial time series data  is non- stationary, 
that is why we applied wavelet transform. 
In mathematical literature, Fourier transforms decomposed the original signal 
into a linear combination as a sine and cosine function whereas by wavelet 
transform the signal is decomposed as a sum of a more flexible function called 
wavelet that is localized in both time and frequency. The wavelet transforms 
were used to adopt a wavelet prototype function (mother wavelet). Temporal 
analysis is constructed with a contracted, high-frequency version of prototype 
wavelet, whereas frequency analysis is performed with a dilated, low 
frequency version of the prototype wavelet. Because the function can be 
represented in terms of a wavelet expansion (using coefficients in a linear 
combination of the wavelet functions), data decompositions can be constructed 
by just using the corresponding wavelet coefficients. There are several types 
of wavelet transforms. Depending on the applications, regarding the 
continuous input signal, the time and scale parameters can be continuous, 
leading to the continuous wavelet transform (CWT). On the other hand, the 
discrete wavelet transform (DWT) can also be used for discrete time signals. 
In the wavelet transforms case, consider that the time domain is the original 
domain. Although, wavelet transforms is the transformation process from time 
domain to time scale domain, these processes are known as signal 
decomposition because a given signal is decomposed into several other signals 
with deferent levels of resolution. These processes allow recovering the 
original time domain signal without losing any information.  Wavelet  
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transforms has reverse process which is called the inverse wavelet transform 
or signal reconstruction [8]. 
The wavelet transform is implemented using a multiresolution pyramidal 
decomposition technique. In fact, a recorded digitized time signal S (n) can be 
analyzed into its detailed cD 1(n) and smoothed (approximations) cA1 (n) 
signals using high-pass filter (HiF-D) and low-pass filter (LoF-D), 
respectively. High-pass filter has a band-pass response. Consequently, the 
filter signal cD 1(n) is a detailed coefficient of S (n) and contains higher 
frequency components. While the approximation signal cA1 (n) has a low-pass 
frequencies filter response. The decomposition of S (n) into cA1 (n) and cD 
1(n) is the first scale decomposition. Inversely, that is possible to perform the 
original signal from the approximations and details coefficients. 
In this paper we will focus in the most famous types of discrete wavelet 
transform which are Haar wavelet transform and Daubechies wavelet 
transform. The wavelets having compact support or narrow window function 
are suitable for local analysis of the signal. Daubechies wavelets and Haar 
wavelet are compactly supported orthonormal wavelets and are the most 
appropriate for treating a non-stationary series [1]. 
 
Definition: [2,11] discrete Wavelet transform can be defined by the following 

function: 

2
, ( ) 2 (2 ),

j
j

j k t t kψ ψ= − , ;j k Z∈ {0,1, 2,....}.z =  

Where ψ  is a real valued function having compactly supported, 

and ( ) 0t dtψ
∞

=∫
−∞

 Generally, the wavelet transforms were evaluated by using 

dilation equations, given as: 
( ) 2 (2 ),t l t kkk

φ φ= −∑
 

( ) 2 (2 ).t h t kkk
ψ φ= −∑

 
Father and mother wavelets were defined by the last two equations 
where (2 )t kφ − represents the father wavelet, and ( )tψ represents the mother 
wavelet. Father wavelet gives the high scale approximation components of the 
signal, while the mother wavelet shows the deviations from the approximation 
components. This is because the father wavelet generates the scaling 
coefficients and mother wavelet evaluates the differencing coefficients. Father 
wavelet defines the lower pass filter coefficients ( kh ). High pass filters 
coefficients ( kl ) are defined as [7]. 

2 ( ) (2 ) ,l t t k dtk φ φ
∞

= −∫
−∞  
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2 ( ) (2 ) .h t t k dtk ψ ψ
∞

= −∫
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Haar wavelet transform is the oldest and simplest example in the wavelet 
transforms and is defined as: 
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For the Haar wavelets transform: 
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Note: the mother wavelet satisfies the following two conditions: 
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Where 1( )ψ ω presents the wavelet transform. 
Daubechies wavelet transforms: Since Haar wavelet is the simplest and oldest 
wavelet transform; it was improved by Daubechies in 1992[14]. He developed 
the frequency – domain characteristics of the Haar wavelet. However, we do 
not have a specific formula for this method of wavelet transform. So, we tend 
to use the square gain function of their scaling filter, the square gain function 
was defined as [13]. 

1
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:l Positive number and represents the length of the filter, for more details and 
examples see [2,12,13,25,26]. 
 
2.2. ARIMA model 
Application of nonlinear regression to price forecasting has not been reported 
so far. Other approaches of econometric modeling are univariate time series 
methods like auto regressive moving average (ARMA) [3,9]. ARMA is a 
suitable model for the stationary time series data, although most of the 
software uses least square estimation which requires stationary. To overcome 
this problem and to allow ARMA model to handle non-stationary data, the 
researchers investigate a special class for the non-stationary data. This model 
is called Auto-regressive Integrated Moving Average (ARIMA). This idea is 
to separate a non-stationary series one or more times until the time series  
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becomes stationary, and then find the fit model. ARIMA model has got very 
high attention in the scientific world.  This model is popularized by George 
Box and Gwilym Jenkins in 1970s [4].  There are a huge number of ARIMA 
models; generally there are ARIMA (p, q, d) where: P: order of autoregressive 
part (AR), d: degree of first differentiation (I) and q: order of the first moving 
part (MA). Note that, if there is no differencing been done (d = 0), Then 
ARMA model can be got from ARIMA model.  
The general mathematical ARIMA model can be defined as [16]: 

( ) .
( )t t
vW a
v

βμ
ε

= +
 

Where:  
t     : Indexes time. 

tW    : The response series tY or a difference of the response series. 
μ    : The mean term.  
v     : The backshift operator; that is, 1.t tvX X −=  

( )vε  : The autoregressive operator, represented as a polynomial in the 
backshift operator: 

1( ) 1 ( ) ... .p
pv v vε ε ε= − − −  

( )vβ  : The moving-average operator, represented as a polynomial in the 
backshift operator:  

1( ) 1 ( ) ... .p
pv v vβ β β= − − −  

ta     : The independent disturbance, also called the random error. 
The model building process involves the following steps; Model 
identification,  
Model parameter estimation, Model Diagnostics and Forecasting. For more 
details refer to [20]. 
 
2.3. Daily return data  
The daily logarithmic return, tr for all market prices can be calculated using 
the definition of historical volatility as [20]: 
 

1ln( ) ln( ).t t tr p p −= −  
Where tp indicates to the price information at time t.  
 
 
3 Data Description  
 
In order to illustrate the effectiveness of Haar wavelet transforms and 
Daubechies wavelet transform, the Amman Stock Market data sets are 
selected for discussion. We consider a daily return data for the time period 
from April 1993 (the days when stock exchanges were open) until December  
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2009 with a total of 4096 observations. The total number of observations for 
mathematical convenience is suggested to be divisible by 2 j . It means that the 
data should satisfy the condition of observations= 2 j . For more details refer to 
[24,11]. 
In order to apply ARIMA model, the data should be stationary. Therefore, the 
return data can be considered for this comparison.  Because in the financial 
literature, it is well known that the return series is stationary. Moreover, this 
result can be checked empirically, provided, it has a sufficient number of 
historical returns available [21]. Moreover, the returns are serially 
uncorrelated which means that the data is stationary and suitable to apply the 
ARIMA model with the return data, directly without any treatments [23]. The 
approximation series data has been considered in this comparison since it 
contains the main component of the transform and it shows all the information 
about the original series. 
 
 
4 Methodologies 
 
This section consists of two subsections. Firstly, we will present the criteria 
which have been used to make a fair comparison, and then the framework 
comparison will be presented with more details.    
4.1 Prediction accuracy criteria 
We have been adopted to compare the performance of the models within three 
types of accuracy criteria [19]: 

1- Mean square error (MSE). 
2- Root mean squared error (RMSE). 
3- Mean absolute error (MAE). 

MSE can be defined by:  
2

1

(actual value-predicted value)
.

N

iMSE
N

==
∑

 

 
RMSE can be defined by: 

2

1

(actual value-predicted value)
.

N

iRMSE
N

==
∑

 

And  
 
MAE can be defined by: 

1

1 actual value-predicted value .
actual value

N

i
MAE

N =

= ∑  

Where N represents the number of observations used for analysis. 
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4.2. Comparison framework: 
The wavelet transform converts the return data series into two sets; 
approximation series (CA1 (n)) and details series (DA1 (n)). These two series 
present a better behavior. i.e.  More stable in variance and no outliers than 
the original price series, then, they can be predicted more accurately. The 
reason for the better behavior of these two series is the filtering effect of the 
wavelet transform. In this paper the Approximation series has been used since 
this series behave as the main component of the transform, while the detail 
series provides “small” adjustments. The procedure explained in this paper is 
as follows: 
Firstly, Decompose through the wavelet transform (Haar wavelet transform 
and Daubechies wavelet transform (db2)) the available historical return data.  
Secondly, Use a specific ARIMA model fitted to each one of the 
Approximation series to make the forecasting.   
Thirdly, this technique is compared with an ARIMA model used directly to 
forecast the return data series by using the above criteria. 
 
 
5 Experimental Results 
 
In this paper, the minimum value of MSE, RMSE and MAE is considered to 
select the best ARIMA model of the daily return data. All choices of ARIMA 
models for the return data are included in this test between (0,0,0) and (2,2,2). 
If we choose more than two, then there are more complicated conditions that 
should be satisfied. Also, if p and q are more than two, then Autocorrelation 
function (ACF) and partial Autocorrelation function (PACF) will be presented 
as an exponential decay. This means that ARIMA model becomes worthless 
and there is no importance.    
 

Table1. Shows the statistical criteria for the ARIMA (p,d,q) model 

Statistical fit 
Value after transform via 

Daubechies 

Value after 

transform via Haar 

Value before 

transform(original 

return data) 

Mean square error 

(MSE) 
0.00001221 5.67541E-6 0.00001886 

Root mean square 

error(RMSE) 
0.0034987 0.0023823 0.0043386 

Mean absolute error 

(MAE) 
0.0002364 0.0002198 0.00294 
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The return data for Amman stock market has been used as a case study. Price 
forecasting is performed using daily data. Moreover, for the sake of fair 
comparison the same sample data is selected. (From 1993-2009). The fit 
ARIMA model for the original return data is considered as ARIMA(2,0,2) 
with root mean square error equal to 0.0043386 as presented in table 1, while 
the fit ARIMA model for the transform data by using Haar wavelet transform 
is selected as ARIMA (1,0,1) with root mean square error equal to 0.0023823 
as presented in table 1 also. Although the fit ARIMA model for the transform 
data using Daubechies wavelet transform is selected as ARIMA (2,2,0) with 
root mean square error equal to 0.0034987,Table 1 shows some other criteria 
about these results. All of these criteria explain that the Wavelet - ARIMA 
model is better than the ARIMA model. Moreover, the Haar wavelet transform 
gives more sufficient result and better than Daubechies wavelet transform in 
the forecasting. However, in some statistical literature, Daubechies wavelet 
transform is better than Haar wavelet in the decomposition, but in this paper 
we found a negative result, the reason is related to the data set since just the 
approximation series have used in the comparison. 
Moreover, Results in Table 1 indicate that ARIMA model for the returns data 
after wavelet transforms produce smaller forecast error as compared to the 
ARIMA model for actual returns data. Furthermore, the standard errors which 
measure the variation between returns data after wavelet transforms are also 
small. All of these criteria explain that the Haar wavelet transform gives more 
sufficient result and better than Daubechies wavelet transform in the 
forecasting.  
 
 
6 Conclusions 
 
As conclusion for this article, if the Wavelet transform is used for the return 
data, then there are no outlier, seasonal effects and other irregular effects. 
Generally the result of the approximation series under the wavelet transforms 
(rather by using Haar or Daubechies) is better than the original return data and 
more stable in variance, mean and no outliers. Furthermore, the forecasting 
using ARIMA (p, d, q) under the transformed series is better than forecasting 
directly, and also it gives more accurate results. 
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