12 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Inhibition of oocyte growth factors in vivo modulates ovarian folliculogenesis in neonatal and immature mice

    No full text
    Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are among the key regulators transmitting the signaling between the oocyte and the surrounding granulosa cells. Previously, it has been shown that a recombinant BMP type II receptor ectodomain–Fc fusion protein (BMPR2ecd–Fc) is able to inhibit the actions of GDF9 and BMP15 in vitro. Here, we have produced bioactive BMPR2ecd–Fc, which was injected i.p. into neonatal mice. Early folliculogenesis was first studied by injecting mice five times with various doses of BMPR2ecd–Fc during the postnatal days 4–12. Folliculogenesis was affected dose dependently, as evidenced by a decreased mitogenesis of granulosa cells of the growing follicles. Furthermore, we also noticed a decrease in the number of secondary and tertiary follicles as well as an increase in the oocyte size. Electron microscopic analysis revealed that the ultrastructure of the granulosa cells of the primary follicles was not affected by the BMPR2ecd–Fc treatment. A second study was conducted to investigate whether a longer treatment with 12 injections during postnatal days 4–28 would inhibit folliculogenesis. Similar effects were observed in the two studies on the early follicular developmental stages. However, in the long-term study, later stages of folliculogenesis were not blocked but rather increased numbers of antral follicles, preovulatory follicles, and corpora lutea were found. We conclude that BMPR2ecd–Fc is a potent modulator of ovarian folliculogenesis in vivo, and thus, is a valuable tool for studying the physiology and downstream effects of oocyte-derived growth factors in vivo.Samu Myllymaa, Arja Pasternack, David G. Mottershead, Matti Poutanen, Minna M. Pulkki, Lauri J. Pelliniemi, Olli Ritvos and Mika P.E. Laitine

    Inflammatory Nodules Following Soft Tissue Filler Use: A Review of Causative Agents, Pathology and Treatment Options

    No full text
    Nodule development is a common complication following the use of fillers for soft tissue augmentation and is commonly categorized as inflammatory or non-inflammatory in nature. Inflammatory nodules may appear anywhere from days to years after treatment, whereas non-inflammatory nodules are typically seen immediately following implantation and are usually secondary to improper placement of the filler. Although inflammatory nodules are more common with permanent fillers such as silicone, inflammatory nodule development following administration of temporary fillers such as hyaluronic acid and collagen has also been reported. Treated many times with corticosteroids due to their anti-inflammatory properties, inflammatory nodules may be secondary to infection or biofilm formation, warranting the use of alternative agents. Appropriate and prompt diagnosis is important in avoiding delay of treatment or long-term complications for the patient. This paper addresses the etiology, development, and studied treatment options available for inflammatory nodules secondary to each of the major classes of fillers. With this knowledge, practitioners may expeditiously recognize and manage this common side effect and thus maximize functional and aesthetic benefit

    Atomic and Molecular Data (Données Atomiques et Moleculaires)

    No full text
    corecore