117 research outputs found

    Nectar, humidity, honey bees (Apis mellifera) and varroa in summer: a theoretical thermofluid analysis of the fate of water vapour from honey ripening and its implications on the control of Varroa destructor

    Get PDF
    This theoretical thermofluid analysis investigates the relationships between honey production rate, nectar concentration and the parameters of entrance size, nest thermal conductance, brood nest humidity and the temperatures needed for nectar to honey conversion. It quantifies and shows that nest humidity is positively related to the amount, and water content of the nectar being desiccated into honey and negatively with respect to nest thermal conductance and entrance size. It is highly likely that honeybees, in temperate climates and in their natural home, with much smaller thermal conductance and entrance, can achieve higher humidities more easily and more frequently than in man-made hives. As a consequence, it is possible that Varroa destructor, a parasite implicated in the spread of pathogenic viruses and colony collapse, which loses fecundity at absolute humidities of 4.3 kPa (approx. 30 gm−3) and above, is impacted by the more frequent occurrence of higher humidities in these low conductance, small entrance nests. This study provides the theoretical basis for new avenues of research into the control of varroa, via the modification of beekeeping practices to help maintain higher hive humidities

    Effects of Long-Term Space Flight on Erythrocytes and Oxidative Stress of Rodents

    Get PDF
    Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as “space anemia”. Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects of oxidative stress exposure and space anemia, possibly by integrating appropriate dietary elements and natural compounds that could act as antioxidants

    Increasing genome instability in adrenocortical carcinoma progression with involvement of chromosomes 3, 9 and X at the adenoma stage

    Get PDF
    The investigation of chromosomal aberrations in adrenocortical tumours has been limited by the difficulties of applying classical cytogenetics to tumours with low levels of proliferation. We have therefore applied the technique of interphase cytogenetics to paraffin-embedded archival specimens of 14 adrenocortical adenomas and 13 carcinomas. Hybridizations were performed using centromere-specific probes to chromosomes 3, 4, 9, 17, 18 and X, which have been shown to be altered in other types of tumours. Chromosomal imbalance was defined on the basis of changes in both chromosome index (CI) and signal distribution (SD). Where only one of these was altered, this was classified as a tendency to gain or loss. On the basis of the analysis of optimal hybridizations, carcinomas showed gains in all chromosomes studied, five of nine showing gains in multiple chromosomes. Gains were most common in chromosomes 3, 9 and, in particular X, eight of 11 showing gain, and one a tendency to gain. Chromosomal gain was seen less commonly in adenomas, but again chromosomes 3, 9 and X were involved. Losses were infrequent, only one carcinoma showing loss of chromosome 18, and adenomas showing a tendency to loss of chromosomes 4 (two cases), 17 (one case) and 18 (two cases). Our data suggest that changes in chromosomes 3, 9 and X are early events in adrenocortical tumorigenesis, and that there is increasing chromosomal instability with tumour progression. © 1999 Cancer Research Campaig

    Product and process innovation in manufacturing firms: a 30-year bibliometric analysis

    Get PDF
    Built upon a thirty-year dataset collected from the Web of Science database, the present research aims to offer a comprehensive overview of papers, authors, streams of research, and the most influential journals that discuss product and process innovation in the manufacturing environment. The dataset is composed of 418 papers from more than 150 journals from the period between 1985 and 2015. Homogeneity analysis by means of alternating least squares (HOMALS) and Social Network Analysis (SNA) are used to accomplish the objectives listed above through the keywords given by authors. Initially, the paper highlights and discusses the similarity between the topics debated by the main journals in this field. Subsequently, a wide-range map of topics is presented highlighting five main areas of interests; namely, performance, patent, small firm, product development, and organization. A SNA is also performed in order to validate the results that emerged from HOMALS. Finally, several insights about future research avenues in the manufacturing field are provided

    Complex SUMO-1 Regulation of Cardiac Transcription Factor Nkx2-5

    Get PDF
    Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51) of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R) does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a “shifting” site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity

    Vitalism in contemporary chiropractic: a help or a hinderance?

    Get PDF
    Background: Chiropractic emerged in 1895 and was promoted as a viable health care substitute in direct competition with the medical profession. This was an era when there was a belief that one cause and one cure for all disease would be discovered. The chiropractic version was a theory that most diseases were caused by subluxated (slightly displaced) vertebrae interfering with “nerve vibrations” (a supernatural, vital force) and could be cured by adjusting (repositioning) vertebrae, thereby removing the interference with the body’s inherent capacity to heal. DD Palmer, the originator of chiropractic, established chiropractic based on vitalistic principles. Anecdotally, the authors have observed that many chiropractors who overtly claim to be “vitalists” cannot define the term. Therefore, we sought the origins of vitalism and to examine its effects on chiropractic today. Discussion: Vitalism arose out of human curiosity around the biggest questions: Where do we come from? What is life? For some, life was derived from an unknown and unknowable vital force. For others, a vital force was a placeholder, a piece of knowledge not yet grasped but attainable. Developments in science have demonstrated there is no longer a need to invoke vitalistic entities as either explanations or hypotheses for biological phenomena. Nevertheless, vitalism remains within chiropractic. In this examination of vitalism within chiropractic we explore the history of vitalism, vitalism within chiropractic and whether a vitalistic ideology is compatible with the legal and ethical requirements for registered health care professionals such as chiropractors. Conclusion: Vitalism has had many meanings throughout the centuries of recorded history. Though only vaguely defined by chiropractors, vitalism, as a representation of supernatural force and therefore an untestable hypothesis, sits at the heart of the divisions within chiropractic and acts as an impediment to chiropractic legitimacy, cultural authority and integration into mainstream health care

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore