160 research outputs found

    An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function

    Get PDF
    Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress–strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics

    Effects of amantadine on circulating neurotransmitters in healthy subjects

    Get PDF
    Considering that glutamatergic axons innervate the C1(Ad) medullary nuclei, which are responsible for the excitation of the peripheral adrenal glands, we decided to investigate catecholamines (noradrenaline, adrenaline and dopamine) plus indolamines (plasma serotonin and platelet serotonin) at the blood level, before and after a small oral dose of amantadine, a selective NMDA antagonist. We found that the drug provoked a selective enhancement of noradrenaline plus a minimization of adrenaline, dopamine, plasma serotonin and platelet serotonin circulating levels. Significant enhancement of diastolic blood pressure plus reduction of systolic blood pressure and heart rate paralleled the circulating parameter changes. The above findings allow us to postulate that the drug was able to enhance the peripheral neural sympathetic activity. Minimization of both adrenal sympathetic and parasympathetic activities was also registered after the amantadine challenge. The above findings supported the postulation that this drug should be a powerful therapeutic tool for treating diseases affected by adrenal sympathetic hyperactivity

    Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report

    Get PDF
    BACKGROUND: After perinatal brain injury, clinico-anatomic correlations of functional deficits and brain plasticity remain difficult to evaluate clinically in the young infant. Thus, new non-invasive methods capable of early functional diagnosis are needed in young infants. CASE PRESENTATION: The visual system recovery in an infant with perinatal stroke is assessed by combining diffusion tensor imaging (DTI) and event-related functional MRI (ER-fMRI). All experiments were done at 1.5T. A first DTI experiment was performed at 12 months of age. At 20 months of age, a second DTI experiment was performed and combined with an ER-fMRI experiment with visual stimuli (2 Hz visual flash). At 20 months of age, ER-fMRI showed significant negative activation in the visual cortex of the injured left hemisphere that was not previously observed in the same infant. DTI maps suggest recovery of the optic radiation in the vicinity of the lesion. Optic radiations in the injured hemisphere are more prominent in DTI at 20 months of age than in DTI at 12 months of age. CONCLUSION: Our data indicate that functional cortical recovery is supported by structural modifications that concern major pathways of the visual system. These neuroimaging findings might contribute to elaborate a pertinent strategy in terms of diagnosis and rehabilitation

    The role of autophagy in the cross-talk between epithelial-mesenchymal transitioned tumor cells and cancer stem-like cells

    Get PDF
    Epithelial-mesenchymal transition (EMT) and cancer stem-like cells (CSC) are becoming highly relevant targets in anticancer drug discovery. A large body of evidence suggests that epithelial-mesenchymal transitioned tumor cells (EMT tumor cells) and CSCs have similar functions. There is also an overlap regarding the stimuli that can induce the generation of EMT tumor cells and CSCs. Moreover, direct evidence has been brought that EMT can give rise to CSCs. It is unclear however, whether EMT tumor cells should be considered CSCs or if they have to undergo further changes. In this article we summarize available evidence suggesting that, indeed, additional programs must be engaged and we propose that macroautophagy (hereafter, autophagy) represents a key trait distinguishing CSCs from EMT tumor cells. Thus, CSCs have often been reported to be in an autophagic state and blockade of autophagy inhibits CSCs. On the other hand, there is ample evidence showing that EMT and autophagy are distinct events. CSCs, however, represent, by themselves, a heterogeneous population. Thus, CSCs have been distinguished in predominantly noncycling and cycling CSCs, the latter representing CSCs that self-renew and replenish the pool of differentiated tumor cells. We now suggest that the non-cycling CSC subpopulation is in an autophagic state. We propose also two models to explain the relationship between EMT tumor cells and these two major CSC subpopulations: a branching model in which EMT tumor cells can give rise to cycling or non-cycling CSCs, respectively, and a hierarchical model in which EMT tumor cells are first induced to become autophagic CSCs and, subsequently, cycling CSCs. Finally, we address the therapeutic consequences of these insights

    The Efficacy of Exercise in Reducing Depressive Symptoms among Cancer Survivors: A Meta-Analysis

    Get PDF
    INTRODUCTION: The purpose of this meta-analysis was to examine the efficacy of exercise to reduce depressive symptoms among cancer survivors. In addition, we examined the extent to which exercise dose and clinical characteristics of cancer survivors influence the relationship between exercise and reductions in depressive symptoms. METHODS: We conducted a systematic search identifying randomized controlled trials of exercise interventions among adult cancer survivors, examining depressive symptoms as an outcome. We calculated effect sizes for each study and performed weighted multiple regression moderator analysis. RESULTS: We identified 40 exercise interventions including 2,929 cancer survivors. Diverse groups of cancer survivors were examined in seven exercise interventions; breast cancer survivors were examined in 26; prostate cancer, leukemia, and lymphoma were examined in two; and colorectal cancer in one. Cancer survivors who completed an exercise intervention reduced depression more than controls, d(+) = -0.13 (95% CI: -0.26, -0.01). Increases in weekly volume of aerobic exercise reduced depressive symptoms in dose-response fashion (β = -0.24, p = 0.03), a pattern evident only in higher quality trials. Exercise reduced depressive symptoms most when exercise sessions were supervised (β = -0.26, p = 0.01) and when cancer survivors were between 47-62 yr (β = 0.27, p = 0.01). CONCLUSION: Exercise training provides a small overall reduction in depressive symptoms among cancer survivors but one that increased in dose-response fashion with weekly volume of aerobic exercise in high quality trials. Depressive symptoms were reduced to the greatest degree among breast cancer survivors, among cancer survivors aged between 47-62 yr, or when exercise sessions were supervised

    MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences.

    Get PDF
    Double minutes (dmin), homogeneously staining regions, and ring chromosomes are vehicles of gene amplification in cancer. The underlying mechanism leading to their formation as well as their structure and function in acute myeloid leukemia (AML) remain mysterious. We combined a range of high-resolution genomic methods to investigate the architecture and expression pattern of amplicons involving chromosome band 8q24 in 23 cases of AML (AML-amp). This revealed that different MYC-dmin architectures can coexist within the same leukemic cell population, indicating a step-wise evolution rather than a single event origin, such as through chromothripsis. This was supported also by the analysis of the chromothripsis criteria, that poorly matched the model in our samples. Furthermore, we found that dmin could evolve toward ring chromosomes stabilized by neocentromeres. Surprisingly, amplified genes (mainly PVT1) frequently participated in fusion transcripts lacking a corresponding DNA template. We also detected a significant overexpression of the circular RNA of PVT1 (circPVT1) in AML-amp cases versus AML with a normal karyotype. Our results show that 8q24 amplicons in AML are surprisingly plastic DNA structures with an unexpected association to novel fusion transcripts and circular RNAs

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore