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Abstract Motivated by the well-known result that stift-
ness of soft tissue is proportional to the stress, many of
the constitutive laws for soft tissues contain an exponen-
tial function. In this work, we analyze properties of the
exponential function and how it affects the estimation and
comparison of elastic parameters for soft tissues. In par-
ticular, we find that as a consequence of the exponential
function there are lines of high covariance in the elastic
parameter space. As a result, one can have widely vary-
ing mechanical parameters defining the tissue stiffness but
similar effective stress—strain responses. Drawing from ele-
mentary algebra, we propose simple changes in the norm
and the parameter space, which significantly improve the
convergence of parameter estimation and robustness in the
presence of noise. More importantly, we demonstrate that
these changes improve the conditioning of the problem and
provide a more robust solution in the case of heterogeneous
material by reducing the chances of getting trapped in a
local minima. Based upon the new insight, we also propose
a transformed parameter space which will allow for ratio-
nal parameter comparison and avoid misleading conclusions
regarding soft tissue mechanics.

Keywords Soft tissues - Biomechanics - Constitutive
laws - Nonlinear elasticity - Parameter estimation - Inverse
modeling

B<I Ankush Aggarwal
a.aggarwal @swansea.ac.uk

Zienkiewicz Centre for Computational Engineering, College
of Engineering, Swansea University, Swansea, UK

Published online: 01 March 2017

1 Introduction

Formulating an accurate constitutive law for soft tissues has
been a contentious research topic for several decades (Maurel
et al. 1998, chap. 4). Significant advances have been made
since the seminal work by Fung and others, and a multi-
tude of hyperelastic constitutive laws have been proposed
for describing the stress—strain behavior of different soft tis-
sues. These include myocardium (Humphrey and Yin 1987),
arteries (Holzapfel et al. 2000), ligaments (Natali et al. 2003;
Weiss and Gardiner 2001), heart valves (May-Newman and
Yin 1998).

A common feature of many of the proposed constitutive
laws is the presence of an exponential function. This stems
from the classic study by Fung et al. (1972), which demon-
strated that stiffness of the soft tissues is proportional to
stress. The exponential nature has been shown to be a result
of collagen fiber recruitment and rotation that happens at the
microstructural level (Lanir 1983; Billiar and Sacks 2000).
However, fiber-level mechanics entails mesoscale calcula-
tions leading to high computational cost. Therefore, the phe-
nomenological models containing an exponential are seen as
better suited for tissue- or organ-scale biomechanical studies.

With a wealth of insight available on the suitability of con-
stitutive laws, focus has been increasing on using them within
biomechanical models to predict the mechanical behavior
of soft tissues. Hence, accurate determination of the elas-
tic parameters involved in the stress—strain relationships is a
critical step in such predictive modeling. Various ex vivo and
in vitro testing methods have been developed, and recently,
methods applicable to in vivo dataset are gaining more atten-
tion as they allow the elastic properties to be characterized
in tissues’ native environment.

Exponential function results in a highly nonlinear stress—
strain relationship, even if we discount the geometric non-
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linearity due to large deformation. In spite of this marked
difference between soft tissue constitutive laws and other
commonly used strain energy functions, e.g., for linear and
rubber-like elastic material, standard techniques are used for
parameter estimation and comparison of soft tissues. We aim
to study the effect of nonlinearity of an exponential on soft
tissue constitutive laws and related elastic parameters, and
seek to improve upon the existing standard methods.

This work is motivated by results from our recent study
(Aggarwal and Sacks 2016), where an inverse model for
bioprosthetic valve was developed. The study was designed
to determine mechanical properties of a bioprosthetic valve
leaflet by matching its deformed shape. The constitutive law
contained an exponential function o ~ AeB€ (although
within a weighted integral and with neo-Hookean term),
and the proposed framework included estimating two elastic
parameters A and B (in the original work cp and c] were used,
instead we use A and B for consistency in this manuscript). It
was observed that the objective function contained a long and
narrow valley in the parameter space (Fig. 1a), which resulted
in a slow convergence of the inverse model, especially once
the iterative solution entered the valley.

The objective function with a long narrow valley is
reminiscent of Rosenbrock function used in optimization
textbooks (Fig. 1b), which is a challenging minimization
problem because of its shape (Rosenbrock 1960). Further-
more, the flat shape of the valley means that parameters along
the valley generate closely similar stress—strain response.
Thus, the two parameters A and B are highly covariant
along this valley. On the other hand, changing parameters
transverse to the valley dramatically affects the stress—strain
response (Fig. 2). Therefore, a simple comparison of elastic
parameters for tissue samples might present a grossly wrong
picture. For example, parameters corresponding to points 1
and 5 are much farther apart compared to points 8 and 9
(Fig. 2). However, the former produce a much closer stress—
strain response compared to the latter.

These observations raise multiple questions: did the val-
ley shape result from that one particular problem or is it a
general feature of soft tissues? Can we improve the conver-
gence of parameter estimation? Is there a more rational way
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Fig. 1 a Functional for the inverse modeling of bioprosthetic valve
(adapted from Aggarwal and Sacks 2016) is reminiscent of (b) the
Rosenbrock function. Only the lowest region is colored to emphasize
their valley shape
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Fig. 2 Parameters along the valley of the functional produce similar
stress—strain behavior (/eft), whereas those across produce dramatically
different response (right) (adapted from Aggarwal and Sacks 2016)

to compare the elastic parameters of two tissue samples? If
only two parameters lead to a challenging parameter estima-
tion, how will the problem behave in case of heterogeneous
media (four or more parameters), where one cannot visualize
the objective function? Here, we aim to answer these ques-
tions by using ideas from elementary algebra and analyzing
multiple cases by extending those ideas.

2 Methods and cases considered

Before starting the analysis, we present implementation
details of the various functions and biomechanical models
studied here. The problems were divided into two categories:
displacement-controlled (DC) and force-controlled (FC). In
DC cases, the input variable was the deformation or strain,
and stress or forces were fitted to estimate parameters. On
the other hand, in FC cases, the input variable was the force
or stress, and strain or deformation were fitted.

2.1 One-dimensional curve fitting

Starting in one dimension, the simplest function with an
exponential is

o(A, B,€) = AeBe. (1)

Here € represents strain and is the input, while o is the output
representing stress. Thus, (1) is a DC case, and the inverse
of this relationship

_log(a/A)

€(A, B,o) B
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is an FC case. Since the stress function (1) is not zero at
€ = 0, we also considered a more realistic representation of
stress

oc(A,B,e)=A (eBe — 1) and its inverse 3)
! A+1
e(A,B,a):%. 4)

We considered a model with higher nonlinearity:
(A B.e)=A (1), )

Lastly, the exponential function is sometimes truncated and
linearized beyond an upper bound on strain €,, (Fan and
Sacks 2014). This may represent the condition when all the
fibers have been recruited, thus producing a linear stress—
strain response thereafter. Accordingly, we considered the
following model

o(A, B, ¢)
_[AEB -1 for e < e
| AP — 1) + BeBb(e —eyp)]  fore > ew
(6)

The stress function (6) was defined such that both stress o
and stiffness do/de remain continuous at € = eyp. In all
one-dimensional problems, the input was used to calculate
output which was then matched to observed data in order to
obtain the optimum parameters A and B. We call this process
“curve fitting.”

2.2 Multi-dimensional curve fitting

Hyperelastic constitutive laws for soft tissues are generally
defined in two or three dimensions, based upon deforma-
tion gradient F (Holzapfel 2000). We studied two commonly
used constitutive laws here; however, the results are expected
to be extensible to most others. First is the Gasser—-Ogden—
Holzapfel (GOH) model (Gasser et al. 2006):

A
V(A B.F) = (P2 — 1) + Wauix (F), ©)

where QO = (kIj + (1 — 3k) 14 — 1)?, I = tr(C) is the first
invariantof C = FTF, I; = C : N®N is the fourth invariant
with material direction vector IV, and k controls the “degree
of anisotropy.” Wmawix represents the contribution from the
ground matrix in the tissue, and it is modeled as a compress-
ible neo-Hookean solid:

A
‘I’matrix(F)=% (I —3)—n 10g(1)+§ (log(J))?, ®)

where J = (/det (C) represents the volume change.
Second is the simplified structural model (SM) (Fan and
Sacks 2014):

eB(N-E~N) -1
qf(A,B,F):/F(@)A<T—N.E~N> do
+ Watrix (F)’ (9)

where E = %(C —1I) and I'(#) is the fiber orientation
function. I'(f) is modeled as a truncated Gaussian in angle
0 € [—m/2, /2] with standard deviation (SD) t and peak
atf = w:

1 O —w0)?\ (—d)
INCHES de; exp (— 722 > A— (10)
/2 )
where P = [ exp (—%) df normalizes the distri-
—m/2
bution.

If we assume that microstructural parameters, such as
k, N,d,, w and t, and ground matrix properties are known,
both constitutive models (7) and (9) have only two elastic
parameters A and B to be determined. Even an approxima-
tion of the ground matrix elastic properties provides a good
estimate of the overall mechanical behavior for many cases,
such as bioprosthetic valves (Aggarwal and Sacks 2016). For
both models, second Piola—Kirchhoff stress can be derived
by the standard relation S = 2%, and it is easy to see that
S ~ AeBO) _ In (7), the exponent is BQ, whereas in (9), we
have an integral of exponentials. Thus, the two models rep-
resent two distinct classes of constitutive laws.

GOH (7) and SM (9) models were used in multi-
dimensional curve fitting, where known deformation gradi-
ents were used to calculate the stresses. These stresses were
then matched to the observed stresses in order to determine
the elastic parameters. Since the known input was deforma-
tion and stress was the output, these curve fitting problems
belong to the DC category. We note that for these consti-
tutive laws, there is no closed form solution of the inverse
relation, i.e., strain or deformation gradient as a function of
stress. Therefore, multi-dimensional curve fitting could not
be performed for the FC case.

2.3 Inverse models

For cases where an explicit relation from input to output is not
available (such as the FC case for multi-dimensional prob-
lems) or where the input parameters vary spatially and cannot
be represented using a single set of values, curve fitting can-
not be performed. In such situations, it is more appropriate to
solve an inverse model, where the observations are matched
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to the outcome of a finite element simulation. This finite ele-
ment model uses a predetermined constitutive law, and we
tested both GOH (7) and SM (9) models.

We considered two inverse modeling problems, and all of
the finite element simulations were performed using FEBio
(Maas et al. 2012). First problem is that of a biaxial testing
of a thin planar tissue sample (Fig. 3), which was studied for
both DC and FC cases. In the DC case, known uniform dis-
placement boundary conditions were applied on the sample
edge, and total reaction forces on the edges were matched
to the observed values. On the other hand, in the FC case,
known uniform forces were applied on the sample edge, and
average edge displacements were matched to observed val-
ues. A detailed description of the setup, such as the sample
size, boundary conditions, is specified in “Details of biaxial
simulation.”

The second problem studied here is the shape matching
of a semilunar tissue sample under static pressure loading
(Fig. 4), which represents the closing of a bioprosthetic valve
leaflet. Since the input for this problem is pressure traction,
only FC case was possible. Details of the shape matching
procedure were described in our previous work (Aggarwal

. Prescribed y force or displacement
(a) Zero x-disp ARAAEAAANEAA A RAA AR AR A AR AT AN
-lacement

Prescribed x force or displacement

36Flber dlsperg}gn (degrees

3 361

Zero y-displacement

Fig. 3 Simulation setup of the planar biaxial stretching of a square
tissue sample, a variable microstructure and b described boundary/load
conditions on a quadrilateral mesh

Rigid pl
(b) )l planes

" Fiber dlsperaon (degrees)

38

Fig. 4 Simulation setup of a semilunar-shaped tissue sample with a
variable fiber direction, b under static pressure load and in contact with
two rigid planes with zero displacement boundary condition prescribed
on the rounded edge
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and Sacks 2016) and are summarized in “Details of tissue
pressurization simulation.” All of the problems considered
in this study are summarized in Table 1.

2.4 Generic notation

For all the cases considered, both DC and FC, we define a
generic notation for the analysis. f (x;) denotes the observed
data at independent input variable x; for i = 1...N, and
f(A, B, x;) denotes the model. A and B are the parame-
ters to be determined by fitting f (A, B, x;) to f (x;). In the
present context of soft tissue mechanics x denotes the input
applied during testing, e.g., applied strain, displacement or
load, f represents the observed output, e.g., stress, force,
deformed shape or strain, and f (A, B, x) is the same quan-
tity computed using our model. Since we are interested in
functions of the form f(A, B, x) ~ AeB-%) or its inverse,
A has units of stress and B is dimensionless.

To fit our model to the observed data, we define a
functional F = || f — f|. The minimum point of this
functional corresponds to the optimum parameters A B =
argminy g F, where f and f are “closest.” We use the norm
|l - || in a general sense, and two options were explored:

2-norm: F = || f — fl» an
log-norm: F = || f = flloe = [Tog(f) —Tog(fHll,  (12)

The 2-norm is the standard Euclidean norm, which =
> (fxi) = f()c,'))2 for discrete input x; or = fOX (f(x)
— f ()c))2 dx for continuous input x € (0, X). The “log-
norm” uses logarithm of f and f in the standard Euclidean
norm. The logarithm function is denoted as log to clarify its
modified form

— log(x) ifx >0
log(x) = { o ifx<0" (13)

In general, there could be constraints on A and B in
our minimization problem. These constraints are physi-
cally motivated, for example from thermodynamics of strain
energy density and convexity requirements for stress func-
tion. Here, we considered two constraints that both A and B
must be positive.

In order to exclude the effect of noise, the observed data
were generated synthetically for known values of the param-
eters A and B. Hence, we denote the observed data as
f(x) = f(A, B,x), where A and B are known a priori.
Clearly, in this case, the global minimum of F should occur
at A= Aand B = B. All the parameters to be determined
are collectively denoted as ¢, and the model f and data f at
all inputs x; combined into a vector are denoted as f and f,
respectively.



An improved parameter estimation and comparison for soft tissue constitutive models containing...

Table 1 Summary of all

problems considered, indicating Problem Model Input Output Type
f(?rce—controlled (FC) and 1D curve fitting (D Strain € Stress o DC
displacement-controlled (DC) .
cases 3) Strain € Stress o DC
5) Strain € Stress o DC
(6) Strain € Stress o DC
2) Stress o Strain € FC
4) Stress o Strain € FC
Multi-D curve fitting 9) Deformation gradient F 2nd PK Stress S DC
7 Deformation gradient F 2nd PK Stress S DC
Inverse modeling of SM (9) Displacement boundary Edge forces DC
biaxial setup conditions
GOH (7) Displacement boundary Edge forces DC
conditions
SM (9) Force on edges Edge deformation FC
GOH (7) Force on edges Edge deformation FC
Inverse modeling of SM (9) Pressure Deformed shape FC
shape matching
GOH (7) Pressure Deformed shape FC

Lastly, we define two curves in the (A, B) parameter
space where one of the first derivatives of the functional F
vanishes:

. IF(A, B
Amin(py & 37(4,B) —0 and (14a)
8A Arlmn(B),B
. IF(A, B
Ay & 97(4,B) —0. (14b)
8B Arznin(B),B

We name them A-partial minima (APM) and B-partial
minima (BPM) curves, respectively, or PM curves collec-
tively. The two PM curves intersect at the global min-
imum (A, B), and the shape and adjacency of the two
curves help develop an intuitive and qualitative under-
standing of the analysis. Whenever possible, closed form
expressions were evaluated for PM curves. For other prob-
lems, the PM curves were determined numerically. For
APM, this was done by fixing B at various values and
minimizing F with respect to A, and vice versa for
BPM.

2.5 Parameter estimation

In order to calculate the elastic parameters for soft tissues, a
numerical optimization has to be performed to minimize the
function F(c¢). We focus on gradient-based line search meth-
ods, which proceed iteratively in two steps: (1) determine a
direction along which F will decrease and (2) determine the
step size to move along that direction (also known as line
search). For calculating the direction in step 1, the simplest
choice is the steepest descent direction —VF. However, it

leads to extremely slow convergence for functionals with
a narrow valley, such as the Rosenbrock function (Nocedal
and Wright 2006). On the other hand, using the full Newton’s
method
(vzj-‘) Ac=—VF (15)
gives second-order convergence. However, it requires calcu-
lation of second derivatives for the Hessian V2 and solving
a linear system of equations (15), making it computationally
expensive. For least-square functionals, such as the 2- and
log-norms (11,12), their form allows a simpler approxima-
tion of the Hessian. If J = 9f /dc¢, then the functional gradient
is VF = JT(f — f) and the first-order approximation of the
Hessian is V2F ~ JTJ. This approximation leads to the
Gauss—Newton algorithm
A'hHae=3"(f D), (16)
which gives approximately second-order convergence and
requires only the first derivative to be computed.
Comparing the different gradient-based methods for fit-
ting the one-dimensional exponential function (1), we found
that the Gauss—Newton algorithm performed the best. This
is consistent with observations about the Rosenbrock func-
tion (Nocedal and Wright 2006). Henceforth, we used
the Gauss—Newton algorithm (Algorithm 1) for all prob-
lems. For the line search in step 2, we used a simple
backtracking algorithm, which took into account any con-
straints on the parameters and situations of failed f calcu-
lation (e.g., due to non-convergence of the finite element
solver).
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Algorithm 1: Parameter estimation using Gauss—
Newton method with backtracking line search

Data: Observed data f and initial guess ¢
Result: Parameters that fit our model f to observed data f in
chosen norm and thus minimize the functional
F(e) = [If(c) — £
1 initialization ¢ < ¢gp;
2 ITER < 0;
3 do
4 Calculate the fitting model f(c) and its derivatives
J = 0f(c)/dc using central finite difference f(c(1 £ §)) ;
Calculate the search direction and step Ac by solving (16) ;
Perform line search as follows (backtracking):
while constraints on ¢ not satisfied do
| Ac <« Ac/2
end
10 while (AF = F(¢) — F(c+ Ac) < 0) or
(calculation of f (¢ + Ac) failed ) do
11 | Ac <« Ac/2
12 end
13 AF = F(c) — F(c+ Ac);
14 c < c+ Ac;
15 ITER < ITER +1;
6 while (A7 > TOL)and (ITER < MAXITER) and
(max |Ac| > §) ;

e ® 9w

—

Values of TOL = 107!9 and § = 107> were used for
all calculations. Convergence of nonlinear minimization can
strongly depend on the initial guess or the starting point
(denoted using subscript 0, ¢g, etc.). Therefore, for each prob-
lem, multiple minimizations were performed with starting
points spanning the parameter space. Hence, 10 x 10 start-
ing guesses were chosen uniformly distributed in the span of
Ap € [0.005,0.1] and By € [20, 100]. The resulting con-
vergence statistics—number of iterations (#Iter), number of
f(c) evaluations (#Eval) and number of parallel evaluations
(#Paral)—were reported as mean & SD. The number of par-
allel evaluations was important since the central difference
calculations for determining J were done in parallel. How-
ever, during the line search, evaluations had to be performed
sequentially, adding to the computational cost.

2.6 Noise

In order to study the effect of noise on the accuracy of the
estimated parameters, we added random noise of varying
magnitude to the target vector:

f(x)= f(A, B,x)(1 +vrand[—1, 1]). (17)

Here v represents the noise level, which was varied from
0.01 to 0.04, and the random number between —1 and 1 had
uniform probability. The effect of the noise was quantified
by an error in the estimated optimum parameters:

e(v) =\/(A—A)2+(é—é)2. (18)
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Material 1 (A, By, 11 = 7/6)

'
Zl X
Fig. 5 For the heterogeneous model example, consider the situation
where tissue sample is made up two materials—1 and 2 with elastic
parameters (Ay, By) and (A2, By), respectively. 1] # 12 is required to

break the symmetry of the problem and make its Hessian non-singular
everywhere

Clearly, e¢(0) = 0 since without noise the global minimum
coincides with the true minimum.

2.7 Heterogeneous model

In all of the problems considered so far, we assumed that the
elastic parameters did not vary over the tissue sample. How-
ever, heterogeneity is a common feature of biomechanical
systems. In order to study the parameter estimation proper-
ties for a heterogeneous system, we considered the simplest
problem of two materials in a biaxial testing setup. That is,
the tissue sample is made of two types of tissues with two sets
of elastic parameters—(A1, B1) and (A», By) (Fig. 5). The
boundary and loading conditions remained the same as in
the biaxial inverse model (“Details of biaxial simulation”).
We considered only the SM constitutive law for both DC
and FC cases. If both tissues in the sample have the same
microstructural properties, then the system is symmetric, i.e.,
both (A1, B1, Az, By) and (A2, B>, A1, By) give exactly the
same response. This leads to a singular Hessian whenever
A| = Aj and By = B». Therefore, in order to break this sym-
metry and make the Hessian non-singular, we used 7, = /6
and o, = /7.

In total, there are four unknown elastic parameters—
A1, By, Ay and B», which leads to a four-dimensional (4D)
parameter space. As a consequence, the functional cannot
be visualized and scanning the entire parameter space for
starting points becomes prohibitively expensive. Therefore,
we only scanned a diagonal plane in that 4D space, where
the starting parameters were the same for the two materi-
als: A1 0 = Az and B; o = Ba. Hence, 8 x 8 starting
guess points were chosen which were uniformly distributed
in the span of log(A; o) € [—4, —2] and By ¢ € [20, 100].
The parameter estimation was performed without adding any
noise to the system.
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3 Results
3.1 Analysis

Before carrying out parameter estimation, we analyze the
properties of various models described in the previous section
and the functional F constructed for them. The analysis is
divided into DC and FC cases.

3.1.1 Displacement-controlled cases

We start by looking at the simplest curve fitting involving an
exponential function (1). Assuming that the “observed” data
has no noise and that the number of observations is infinite,
we have @ = AeB€ Ve e [0, E]. Here, E > 0 defines
the maximum value of strain ¢ at which the stress has been
observed. Our model (1) needs to be fit to o and, thereby,
determine the optimum parameters A and B.

As a first step, we simply take our functional as the 2-
norm of the difference between the observed data and model:

E o N\2
F=lo-5Gl,=/[ (AeB6 — AeBg) de, which can be eval-
0

uated analytically (27) (details of all analytical derivations are
in “Details of the analytical derivations”). Clearly, 7 = 0 at
A = Aand B = B, and F > 0 everywhere else. Thus, it
has a global minimum at (A, B), which corresponds to the
true solution. Also, it can be easily verified that there are no
other local minima in this functional. That is, (A, B) is the
unique global minimum and F is convex everywhere. Fur-
thermore, this is a highly nonlinear functional, and its contour
plot contains a long narrow valley similar to that observed
in the inverse model of a bioprosthetic valve (Figs. 2, 6a).
Hence, interestingly, curve fitting of a simple exponential
function reproduces the behavior seen for a complex inverse
modeling problem.

For this function, the APM and BPM curves can also be
determined in closed form (29). These curves lie very close
together in the valley of the functional (Fig. 6a). Since a
point in the parameter space where both derivatives are zero
represents the global minimum, the proximity of the two PM
curves implies that both derivatives are approximately zero
in the whole valley region. That is why, even though the
functional is convex, parameters along the valley produce a
similar response o (¢€), as observed previously (Fig. 2).

Based upon elementary algebra, for fitting an exponential
function, it is significantly easier if the function is lin-
earized by taking a logarithm before the 2-norm. That is,
F = || log(c) — log(o)]l,. This leads to a quadratic func-
tional in log(A) and B (31), where both APM and BPM
curves are straight lines (33) (Fig. 6¢). Clearly, this norm
also satisfies the condition of a unique global minimum at
(A, B). More importantly, the two PM curves are not close

anymore and are visually distinct (Fig. 6¢). This is reflected
in the functional shape as an absence of a valley.

Since ¢ > 0 and 0 > O for this model for all strain
values, the norm F = || log(o) — log(o)||, is equivalent to
the log-norm (12). There is one subtle difference between
the 2-norm and log-norm functionals: the latter is defined
in a transformed parameter space of (log(A), B) instead of
(A, B). Therefore, in order to objectively compare the two
norms, we look at the 2-norm in the (log(A), B) parameter
space (Fig. 6b). In this case, the APM and BPM curves are
still close together; however, the valley becomes relatively
straight.

We extend these ideas to function (3), which is a better rep-
resentation of stress—strain relation. With 2-norm, we obtain
a similar curved valley in the (A, B) space (Fig. 6d), where
the PM curves are even closer together. In the (log(A), B)
space using 2-norm, the PM curves and the valley are more
straight (Fig. 6e). For the log-norm, modified log function
(13) has to be used, since o goes to zero for € = 0 making
its log undefined. For (3) with log-norm, it is not possible
to obtain analytical expressions for the functional and PM
curves. Thus, these were determined numerically using rep-
resentative values of A = 0.02 and B = 45. Again, we
observe disappearance of the valley, and the two PM curves
become distinct for B Z 10 (Fig. 6f).

We perform similar analysis for multi-dimensional consti-
tutive laws using DC curve fitting. In this case, the functional
and PM curves cannot be determined analytically for either of
the norms, so numerical calculations were performed using
SM and GOH models for the same representative parameter
values (A = 0.02 and B = 45). The resulting functionals
behave very similar to the one-dimensional problems. The
2-norm has a similar valley which is curved in the (A, B)
space and practically straight in the (log(A), B) space, and
the PM curves are extremely close in both cases (Fig. 6g-1)".
Using the log-norm, the PM curves become distinct and no
valley is observed (Fig. 6i, 1). Lastly, a small difference can
be noticed between the 2-norm functionals for two constitu-
tive laws: the PM curves for SM model are closer together
as compared to the GOH model.

3.1.2 Force-controlled cases

Similar to the analysis of DC cases, we start with the simplest
FC problem: the inverse of an exponential function (2). We
assume that the observed data is of the same form without any
noise, i.e., €(0) = (log(a//i)) /B, and that the observations
were made continuously in the range o € [1, ¥]. Here, ¥ is

! The PM curves provide a visual and intuitive way of interpreting the
effect of the modifications. The closeness of the PM curves could be
quantified (e.g., by integrating the squared-difference between the two);
however, that would not add much value to the analysis.
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Fig. 6 Functional for displacement-controlled (DC) cases plotted as
a contour; global minimum is indicated using a green circle, and the
PM curves are plotted using colored lines—APM (blue) and BPM (red).

the maximum stress at which strain was observed. In order
to fit our model to the observed data, as a first step, we take
the 2-norm functional: F = ||€ — €||,. This can be evaluated
analytically and results in a rational functional (35). Similar
to the DC case, along and narrow valley is observed (Fig. 7a).
Here also, we find that the PM curves (37) and (39) essentially
overlap. Furthermore, the valley and PM curves become rel-
atively straight in the (log(A), B) space (Fig. 7b)—another
similarity to the DC case.

However, unlike the DC case, changing the norm to log-
norm, or any other norm, does not make the model linear,
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Left and center column plots are using 2-normin (A, B)and (log(A), B)
space, respectively, while the right column plots are using log-norm

and the valley shape of the functional persists. Instead, if the
function (2) is rewritten as:

1 log(A)
=—1 — , 19
€(0) 3 og(o) 3 (19)
it is easy to see that defining a new pair of parameters
log(A
_ e (20a)
B
g (20b)
=3
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Fig. 7 Functional for force-controlled (FC) cases plotted as a confour;
global minimum is indicated using a green circle, and the PM curves are
plotted using colored lines—APM (blue) and BPM (red). All function-

makes the strain €(0) = Blog(c) — « linear in param-
eters o and B. Hence, the parameter estimation problem
using 2-norm becomes a linear least-square problem. In other
words, the transformation of parameters from A, B to «,
makes the 2-norm functional F(«, B) = |€(a, B) — €|,
quadratic (Fig. 7¢). Concomitantly, the PM curves (36) and
(38) become straight lines that are distinct from each other.

This idea is extended to function (4), where, even though
the transformation does not make the function exactly linear,
it exhibits a similar behavior in the functional shape and PM
curves (Fig. 7d—f). That is, in the original parameter space
(A, B),the2-norm functional has a narrow and curved valley.
Transforming the parameter space to (log(A), B), the valley
becomes straight, but the PM curves remain close together.
Lastly, using the transformation (log(A)/B, 1/B), the valley
ceases to exist, and the PM curves become distinctly differ-
ent.

For the FC cases, curve fitting cannot be performed for
multi-dimensional constitutive models. Instead, we calculate
the functional and PM curves for biaxial inverse model using

-0.15 -0.1 -0.05 0
log(A)/B
@) S
§ 0.03
0.01 x \ x
-0.15 -0.1 -0.05 0
log(A) log(A)/B

als are evaluated using 2-norm but plotted in different parameter spaces;
from left to right column: (A, B), (log(A), B), and (log(A)/B, 1/B)
space, respectively

SM. Even this multi-dimensional problem, which involves a
highly complex stress—strain function, behaves very similar
to the 1D problems. With 2-norm, we obtain a narrow and
curved valley in the (A, B) space (Fig. 7g), which becomes
straight in the (log(A), B) space (Fig. 7h). In both of these
cases the PM curves remain close together. However, in the
(log(A)/B, 1/B) space we do not see any valley and the
PM curves become distinct (Fig. 7i). The functional shape
and PM curves can be useful indicators for the parameter
estimation, as we see next.

3.2 Parameter estimation

Based upon the analysis, we compare the following four for-
mulations for the DC cases:

1. 2-norm in (A, B) parameter space

2. 2-norm in (log(A), B) parameter space
3. log-norm in (A, B) parameter space

4. log-norm in (log(A), B) parameter space
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On the other hand, for FC cases, we compare the following
three formulations—all with 2-norm:

1. (A, B) parameter space
2. (log(A), B) parameter space
3. (log(A)/B, 1/B) parameter space

3.2.1 Displacement-controlled cases

All four DC cases tested using the algorithm with four for-
mulations were summarized (Fig. 8). The 2-norm functional
was plotted versus iterations for one representative starting
point, and average statistics for all starting points were tab-
ulated. There was a consistent pattern that the number of
iterations needed to converge decreased as we changed from
formulation 1-4, withlog-normin (log(A), B) space produc-
ing the best results. The decrease was modest in some cases

(Fig. 8c), while it was as high as 60% in others (Fig. 8a,
d). Furthermore, convergence was slower with SM model
(Fig. 8b, d) compared to the GOH model (Fig. 8a, c). In fact,
the iterations for SM curve fitting with 2-norm diverged for a
few initial guesses. Secondly, we also found a clear decrease
in the SD of number of iterations as we go from case 1-4.
This shows that by using log-norm and (log(A), B) space,
the problem becomes uniformly converging.

A couple of worthwhile remarks about the implementa-
tion of the proposed algorithm: it was observed that when the
minimization routine uses a finite element solver for model
calculation (FEBio in this study), care must be taken with
the floating point precision of input and output. If input and
output are in ASCII format, severe truncation errors can be
introduced into the minimization routine. These truncation
errors can adversely affect the proposed minimization algo-
rithm, especially with small TOL and § values. This can be
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6 100 I 1 Norm Parameter #Iter #Eval #Paral

o0 e = = =B - SR

£ BE’ 2-norm ———"4 (AB)  69+13 444+104 167+54

& £ -
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Fig. 8 Parameter estimation results for four displacement-controlled (DC) cases with one representative example of convergence each (left), and
statistics with starting points spanning the parameter space (right) summarized as mean £ SD (¥iterations from some starting points did not

converge)
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Fig. 9 Parameter estimation results for four force-controlled (FC) problems with one representative example of convergence each (left), and
statistics with starting points spanning the parameter space (right) summarized as mean =+ SD

alleviated to some extent by increasing the precision of float-
ing point numbers in the input and output file format. Effect
of this truncation error can be seen in convergence plots of
inverse problems (Fig. 8c, d), where the functional did not
decrease beyond a value. This minimum value did not change
with the formulation and thus was only dependent on the
problem setup. Curve fitting problems did not show such a
minimum (Fig. 8a, b). Secondly, the Gauss—Newton equa-
tion (16) sometimes gives large step sizes (Ac), such that
the current guess ¢ may go outside the physiological range.
This can adversely affect the line search and calculation of
f may fail occasionally. This is why the condition of func-
tion calculation being successful was added in the algorithm
(Algorithm 1, line 10).

3.2.2 Force-controlled cases

For all FC cases, the parameter estimation improved as we
changed from formulation 1-3 (Fig. 9). The formulation with

2-norm and (log(A)/ B, 1/B) space performed the best in all
problems. However, the improvements in convergence speed
were smaller than those in DC cases, with the maximum
reduction in iterations required being 35% (Fig. 9d). The SD
also decreased as we went from formulation 1-3, showing
that problem converged more uniformly. Lastly, the GOH
model (Fig. 9a, ¢) performed marginally better than the SM
(Fig. 9b, d) in the (A, B) space. However, the improvements
due to new formulations were smaller for GOH model than
those for the SM. Since all of the problems were inverse
models that involved interfacing with FEBio, functionals did
not decrease beyond a minimum value (similar to the DC
inverse models).

3.3 Noise
When noise was introduced into the observed data, the global

minimum of the functional moved away from the true solu-
tion for multi-dimensional curve fitting with both SM (9) and
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Fig. 10 Change in error as a function of random noise introduced into
the target vector for DC cases. a structural model and b GOH model

GOH (7) models. As the level of noise (v) was increased, the
error in estimated parameters also increased. However, for
both models, the increase in error was significantly lower
using the log-norm as compared to the 2-norm (Fig. 10).
Change of parameter space between (A, B) and (log(A), B)
had no effect on the error. Since norm was not changed in
the FC cases, the variation of error as a function of noise
remained the same irrespective of the parameter space used
(results skipped for brevity).

3.4 Heterogeneous model

The true parameters (Al, By, A, Bg) were chosen from the
valley region of the 2-norm functional (i.e., on either APM or
BPM curve—the two curves essentially overlapping). This
led to a system where the two materials produced a sim-
ilar response and were difficult to differentiate. Only the
convergence/non-convergence” was recorded and compared
between the two formulations that performed best and worst
in the homogeneous parameters estimation. That is, for the
DC case, (a) 2-norm with (A, B) space and (b) log-norm with
(log(A), B) space were used. The results from various start-
ing points for the DC case showed a clear difference between
the two formulations (Fig. 11). Even though the second for-
mulation did not give perfect results (50 out of the 64 initial
guesses led to convergence), it performed significantly better
compared to the first formulation (only 25 out of the 64 initial
guesses led to convergence).

In the FC case, two formulations with (a) (A, B) space
and (b) (log(A)/B,1/B) space were used, both with 2-
norm functional. The improvement in this case was much
more significant (Fig. 12). Only 4 out of the 64 starting
guesses resulted in convergence using the original param-
eters, whereas 63 out of 64 starting guesses resulted in
convergence using the transformed parameters. Furthermore,
the DC and FC cases had closely equivalent boundary con-
ditions and true parameters (A, By, Aa, B>). Therefore, it
is worthwhile comparing their performance. In the standard

2 Both divergence and convergence to a wrong solution (i.e., local min-
ima) are termed as non-convergence here.
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formulation (2-norm and (A, B) space), the DC case was
better conditioned than the FC case and led to convergence
more often (Figs. 11a, 12a). However, in the modified for-
mulation, FC case significantly outperformed the DC case
(Figs. 11b, 12b).

3.5 Parameter comparison

The valley in the functional is a region of high covariance
between the two parameters A and B, and parameters along
this valley produce similar stress—strain response while those
across it do not (Fig. 2). Therefore, knowing the equation of
the valley will greatly facilitate parameter comparison. Using
(log(A), B) parameter space with 2-norm, a straight valley
was observed in the functional for all problems (Figs. 6, 7).
Therefore, as a generalization, we approximate the equation
of the valley as a straight line with slope m passing through
the optimal parameters (A, B), ie.,

log(A/A) +m(B — B) = 0. (21)

However, the dependence of slope m on a problem presents
achallenge, as one would have to calculate it numerically for
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Fig. 13 Variation of the slope m of the valley in functional landscape for various models—a—c for one-dimensional models (3), (5) and (6),
respectively, and d and e for multi-dimensional GOH (7) and structural (9) models, respectively

each specific setup. Thus, we determined the relation between
the slope of valley and various parameters for several 1D and
multi-dimensional problems, with the aim of establishing a
general criterion on how to approximate the slope without
explicitly calculating it.

In all problems, we numerically verified that the slope
of the valley did not depend on the true parameters (A, B)
(within the physiological range). In 1D, for exponential func-
tion (3), the slope was well approximated by the maximum
value of strain: m ~ E (Fig. 13a). This can also be con-
firmed by manipulating the analytical expression of PM
curves (29). For exponential function with higher nonlin-
earity (5), m ~ E? (Fig. 13b). For truncated exponential
function (6), we found that m ~ € if € < €y, and m = €y,
otherwise (Fig. 13c). Thus, in general, the slope of the valley
is well approximated by the highest coefficient of B in the
exponential.

Similarly, for multi-dimensional GOH model (7), slope
was approximately equal to the maximum value of the expo-
nent Q: m ~ Qmax (Fig. 13d). For the structural model (9),
stress is an integral of the exponential function with varying
exponent B(N - E - N), where p(N) = N - E - N is the
extension in direction N. Since there is not a single value of
the exponent at the maximum load, we denote the maximum
and minimum coefficients of B as pmax and pmin, respec-
tively. Next, we assume that the slope m lies between these
two values, i.e., pmin < M < Pmax. In order to verify this
assumption, we define an indicator

m Pmin Pmin
o= (o) ().
Pmax Pmax Pmax

(22)

We found 0 < x < 1 (Fig. 13e) for all cases, thus proving
our assumption. Moreover, for most of the cases, the slope
was well approximated by the maximum extension pmx (i.€.,
x ~ 1).Only in the case when the principal stretches differed
significantly and the maximum stretch was not aligned with
the material direction, x % 1. Thus, in most of the situations,
it is possible to approximate the valley’s slope simply from
the maximum applied strain and tissue microstructure.

4 Discussion
4.1 Effect of exponential function

Soft tissue’s mechanical response is characterized by high
nonlinearity, anisotropy and non-homogeneity. The nonlin-
earity feature is represented as an exponential function in
many of the stress—strain relationships (Maurel et al. 1998,
chap. 4). Motivated by some observations from our previ-
ous work (Aggarwal and Sacks 2016), we aimed to analyze
the effect of this high nonlinearity on elastic parameters. We
found that it is a fundamental feature of the exponential func-
tion that leads to a narrow valley in the functional, irrespective
of the complexity of the problem setup or constitutive law
details. Furthermore, we categorized all the problems into
DC and FC cases and found a similar functional shape for
both problems. That is, the functionals contained a charac-
teristic valley shape which was related to the proximity of
two PM curves (Figs. 6, 7). This functional valley resulted
in an ill-conditioned system, high covariance between the
two elastic parameters, slow convergence during param-

@ Springer



A. Aggarwal

eter estimation, and misleading conclusions in parameter
comparison.

4.2 Significance of presented results

In order to solve these challenges, we drastically simpli-
fied the problem by looking at an exponential function (1).
Although this may seem like an oversimplification at first,
the function reproduced the behavior observed for soft tis-
sues. Thus, extending the ideas from elementary algebra,
we found two different solutions for the two categories of
problems. For DC cases, we found that using log-norm and
(log(A), B) space made the parameter estimation close to
linear and improved the condition of the problem. This was
graphically depicted using two PM curves and separation
between them. On the other hand, for FC cases, we found
that by keeping the 2-norm but using (log(A)/ B, 1/B) space,
the problem’s condition was significantly improved. These
qualitative changes were consistently observed irrespective
of the specific details of the problem (Figs. 6, 7). The new
formulations led to an increase in the convergence speed for
all problems considered (Figs. 8, 9). The increase in con-
vergence was significant in some problems, while limited in
others. In general, the improvements were smaller for the FC
cases compared to those in DC cases. Also, the closeness of
two PM curves was found to be related to the convergence
speed, thus proving to be a useful indicator.

Secondly, we found that using 2-norm and (log(A), B)
space, the functional contained a straight valley for all prob-
lems studied here. The slope of the valley was found to be
well approximated by the highest coefficient of B for most of
the problems (Fig. 13). Therefore, it is possible to estimate
the slope of the valley in the 2-norm functional for a specific
problem based upon the applied strains and microstructural
properties, without performing any minimization or param-
eter estimation. It was established that changing parameters
along the valley minimally affects the overall stress—strain
response, whereas changing the parameters across the valley
dramatically varies the response (Fig. 2).

4.2.1 Proposed modifications

Based upon these results we propose to use log-norm for DC
cases and 2-norm for FC cases. Furthermore, we propose the
use of (log(A), B) space and (log(A)/B, 1/B) space for DC
and FC cases, respectively. We note that for the second propo-
sition, since A has the units of stress, taking its log would
be physically nonstandard. Therefore, we propose a modified
form of the constitutive laws. Instead of 6 (A, B, €) ~ AeBe,
we propose to use a form

(A, B, e) ~ neAeBe, (23)
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parameter comparison

where 7 is a known and specified number with units of stress
(e.g., stiffness of collagen fibrils). This modification, in addi-
tion to making the parameter A dimensionless, can also be
used to scale A so that its value is in the same range as
B, thus improving the numerical conditioning of the prob-
lem. Another benefit of using this modified form is that now
A € Ris not restricted to be positive as A was, thus reducing
the constraints on the parameter estimation problem.

Using the valley’s slope in the functional space, which can
be approximated for a given problem setup, we define a new
set of parameters (Fig. 14)

¢ =log(A) +mB and
n =mlog(A) — B.

(24a)
(24b)

These parameters may be used to rationally compare elastic
parameters of tissue samples, so as to truly represent the dif-
ference between their resulting stress—strain relationship. We
call ¢ the “major parameter” as it varies the stress—strain rela-
tion significantly, and n the “minor parameter” as its effect
on the stress—strain relation is minimal.

4.2.2 Faster convergence

One of the primary effects of the new formulations was
the change in the functional shape (absence of a valley),
which led to faster convergence of the parameter estimation
(Figs. 8, 9). Although faster convergence may seem inconse-
quential for curve fitting procedures, it can save substantial
computational time for inverse models where each iteration
may take minutes or hours to compute. This is becoming
more important as inverse models are increasingly being
recognized as the most appropriate way of characterizing
mechanics of soft tissues (Rausch et al. 2013; Zhang et al.
2015). Curve fitting assumes uniform microstructural prop-
erties and uniform strain, which usually do not hold true for
soft tissues because of their heterogeneity. Therefore, inverse
modeling is seen as a more accurate tool, and improved
parameter estimation has the potential for making them more
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widely usable and, possibly, suitable for bedside computa-
tions.

4.2.3 More than improved speed

Although faster convergence is an important result, the
changes in the functional shape with the proposed formu-
lations had other implications as well. We found that the
parameter estimation becomes more robust with respect to
noise when using log-norm for DC cases (Fig. 10). However,
the effect of noise only depends on the norm and not the
parameter space used. Thus, no improvement was observed
for FC cases with the new formulation.

Interaction between parameters of multiple materials in
a heterogeneous system may lead to the formation of local
minima, even with simple constitutive models. Here, a prob-
lem with two sets of elastic properties was tested. We found
that when using the modified formulations, chances of get-
ting trapped in a local minima were significantly reduced
(Figs. 11, 12). Furthermore, we also found that FC case per-
formed better than the DC case in heterogeneous inverse
model. Thus, if there is an option to choose between FC
and DC settings for a study, the former might provide more
robust results using the new formulation.

4.2.4 Extension to multiple parameters

In this work, we used two forms of the constitutive laws;
however, the results presented are expected to be general
and applicable to other forms involving an exponential func-
tion. The analysis could also be extended to the case of
multiple parameters, although with additional complexity.
For instance, the model by May-Newman and Yin (1998)
describes strain energy density W(F) = A (eQ - 1), where
Q=B - 3)2—|—Bz (\/1_4 — 1)4,andthushasthreeelastic
parameters (A, By, By). Inthis case, in the three-dimensional
parameter space, we obtain a valley in the A Bj-plane for
each fixed B;, and vice versa in A By-planes (Fig. 15a, b).
Despite these differences, the proposed modification leads

Fig. 15 Results for model by May-Newman and Yin (1998) with
three parameters: a contour of the 2-norm shows valleys in the ABj-
planes, and b valleys in AB;- and ABj-planes interact to provide a

to an improved convergence (Fig. 15¢). Similarly, in mod-
els with multiple exponential terms (Holzapfel et al. 2000;
Holzapfel and Ogden 2009), each term will lead to a val-
ley while other terms are held fixed. Interaction of different
valleys may lead to a complex behavior. For example, the
heterogeneous model presented in this study is qualitatively
similar to having multiple fiber families in the constitutive
model (Holzapfel et al. 2000), which led to the formation
of local minima. Further analysis of such interactions among
different terms is necessary, but is beyond the scope of present
manuscript. Similar convexity analysis is also required for
constitutive models with a large number of parameters, e.g.,
Fung’s law (Labrosse et al. 2016).

4.3 General implications

We chose a minimization algorithm based upon Gauss—
Newton and line search methods (Algorithm 1). However, the
proposed modifications are expected to benefit all minimiza-
tion routines for this class of problems. This is because of
the fundamental changes in the functional shape that should
positively affect the convergence properties irrespective of
the algorithm used. In fact, many of the other methods,
such as gradient-based Levenberg—Marquardt and evolution-
based genetic algorithm (Lee et al. 2014; Labrosse et al.
2016), perform poorly in the presence of narrow valleys in
the functional (Nocedal and Wright 2006). Therefore, the
improvements from proposed modifications may be even
greater for those methods.

Covariance between parameters plays an important role
in the design of experiments. Here, we found that the slope
of high covariance region is related to the maximum strain
applied. That is, applying a higher strain leads to a more hor-
izontal valley, which represents a lower covariance between
the two parameters. The analysis presented here could be
extended to find optimum points of observation so as to estab-
lish maximum confidence in the estimated parameters. This
is extremely important for non-convex problems, since the
solution could depend upon initial guess due to the presence
of local minima (Abbasi et al. 2016).

== g R - - S
r BN ~n
L - 0 l
2-norm -- R
log-norm — A\ ]
t (A,B,B) m R\
(log(4). By By) &
0 5 10
Iteration

complex 3D functional space [green circle denotes global minimum:
(A, By, By) = (0.4,4.5,500)]; ¢ the proposed modification signifi-
cantly improves the convergence speed
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The proposed modifications are simpler for FC cases since
it conserves the use of 2-norm. We also observed that the FC
case performed better than the DC case in the heterogeneous
parameter estimation, which indicates that FC setup may be
better suited for inverse modeling. For all these reasons, we
consider this work as the discovery of a new direction in
soft tissue biomechanics that would lead to multiple future
studies as discussed next.

4.4 Limitations and future work

In this study, we considered only elastic or hyperelastic prob-
lems, but similar analysis could be done for time-dependent
models (such as viscoelastic), which are widely used for soft
tissues. Furthermore, we restricted to only two parameters
in order to facilitate the analysis and visualization of the
functional shape. Extending the work to multiple parameters
will be of significant value and will be completed in a future
study. Although we only used planar tissues as examples here,
the ideas are expected to be applicable to thick tissues, e.g.,
myocardium. Taking a log-norm assumes that all the stresses
are positive, which is reasonable since exponential laws
should not produce negative values. However, this may not
hold true in general, especially for shear stresses. This issue
was not addressed here and will be investigated in the future.

Our treatment of the heterogeneous media was not exhaus-
tive. Examples were used to only demonstrate the advantages
of the proposed modifications. As heterogeneous inverse
problems become exponentially complex as the number of
materials increase, we limited the current study to only two
material types. Although the proposed modifications led to
improved results, they were still not perfect as occasional
non-convergence was observed. A more thorough analysis
of these factors will be performed in the future, especially
when noise is present in a heterogeneous system.

The minimization algorithm proposed here also could be
improved, e.g., by using a better line search method, using
forward difference instead of central difference for the gra-
dient, carefully chosen § value, etc. Hence, the focus here
was not on designing the best minimization algorithm, but to
use the insight on fundamental features that will benefit all
minimization methods. Similarly, innovative ideas could be
used to improve the convergence for specific problems. For
example, using (¢, n) parameter space and minimizing the
functional with respect to only the major parameter ¢ first,
followed by complete minimization could provide significant
speedup.

In addition to parameter estimation, the proposed modifi-
cations could also improve the material and shape optimiza-
tion of bioprosthetics (Fan et al. 2013). These ideas could
also be applied to other techniques, such as elasticity imag-
ing (Oberai et al. 2009) and deformable image registration
(Veress et al. 2005). Lastly, the non-elastic parameters were
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assumed to be known, which is true for several tissues, such as
heart (Nielsen et al. 1991), aorta (Haskett et al. 2010) and aor-
tic valve (Aggarwal et al. 2014). In the future, we will study
the case when non-elastic parameters also need to be deter-
mined from inverse models, e.g., for pathological tissues.

5 Conclusion

In this study, the aim was to elucidate some of the issues
related to soft tissue constitutive laws observed in our last
study. We found that these features are fundamental to the
exponential function, which is commonly used in soft tissue
mechanics. By simplifying the problem and using elemen-
tary algebra, we proposed solutions that showed improved
convergence and robustness with respect to noise. More
importantly, the modified formulations were found to be less
susceptible to being trapped in a local minima for hetero-
geneous problems. We also proposed modified parameters
that will facilitate a rational comparison of elastic parame-
ters. The insight obtained in this study will be used in the
future to significantly improve inverse models and provide
higher confidence in the elastic parameters used for soft tis-
sue biomechanical studies.
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Appendix
Details of biaxial simulation

Biaxial stretching of a 1 x 1cm specimen of thin soft tissue
with a uniform thickness of 0.46 mm was simulated. Since
markers are usually applied in the center one third where
deformation is assumed to be approximately homogeneous,
1/3 x 1/3cm tissue was modeled using Reissner—Mindlin
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thin shell elements. A 40 x 40 quadrilateral element mesh
was used with the tissue in xy-plane (Fig. 3). The fiber
direction was predominantly in the x-direction (v =~ 0)
and fiber dispersion T was approximately 35°, with small
perturbations which made it more appropriate to be solved
using inverse modeling rather than by curve fitting. The neo-
Hookean matrix stiffnessin (8) was setat A = 172.84 kPaand
= 74.1kPa (corresponding to a linearized Young’s modu-
lus of 200 kPa and Poisson’s ratio of 0.35). The lower and left
edges were fixed in the yz and x z directions, respectively, and
free to deform in the third direction (Fig. 3). For DC case, uni-
form displacement was applied on the right and upper edge
of the tissue so as to generate a maximum strain of 13 and 8%
in x- and y-direction, respectively. For FC case, a uniform
force was applied on the right and upper edges in the normal
direction: x-force of 0.4N on the right edge and y-force of
0.26 N on the upper edge. The applied force or deformation
was linearly increased at each quasi-time step, and system
was solved for static equilibrium. The resulting normal reac-
tion force or deformation was averaged at right and upper
edges at 151 uniformly spaced steps between unloaded and
maximally loaded states (both inclusive).

Details of tissue pressurization simulation

A semilunar-shaped single tissue representing a bioprosthetic
valve leaflet with an area of 2.3 cm? and thickness of 0.38 mm
was simulated using Reissner—Mindlin thin shell elements.
The sample geometry was meshed using 2789 quadrilateral
elements with constant thickness (Betsch et al. 1996). Dis-
placement was interpolated using bilinear shape functions,
and stresses were integrated through the thickness using three
point Gauss quadrature rule to obtain bending moments. The
fibers were aligned approximately in the diagonal direction
with a fiber dispersion T & 35° and relatively small pertur-
bations over the sample. Contact of the sample with other
leaflets was modeled using two idealized rigid planes placed
at £60° with respect to the sample’s plane of symmetry
(Fig. 4).

The neo-Hookean matrix stiffness in (8) was set at A =
172.84 kPa and i = 74.1 kPa (corresponding to a linearized
Young’s modulus of 200kPa and Poisson’s ratio of 0.35). A
uniform normal pressure was applied on the tissue with a
maximum value of 120mm of Hg. The contact was solved
using augmented Lagrange method as pressure was linearly
increased. At each load step, static equilibrium equations
were solved to obtain the deformed shape of the tissue sam-
ple, which was recorded at four uniformly spaced points
between unloaded and maximally loaded states (both inclu-
sive). The leaflet shape was compared using 129 virtual
markers, where L,-norm of the closest-point projection onto
the deformed mesh was the objective function, as defined
previously (Aggarwal and Sacks 2016).

Details of the analytical derivations
For AeP€ and A (eBe — 1) using 2-norm

For both functions (1) and (3), we use a common represen-
tation o (€) = Ah(Be). Thus, h(Be) = B¢ corresponds to
(1) and h(Be) = e®¢ — 1 corresponds to (3). Using 2-norm,
we have

E
F(A, B) :/[Ah(B,e)—Ah(é,e)]zde. (25)
0

If we denote

E

/h(B, €)h(B, €)de = g(B, B), (26)
0

the functional can be written in a simplified form
F(A, B) = A’g(B, B) + A’g(B, B) — 2AAg(B, B). (27)

The gradient of functional w.r.t. A and B is

A ) T
[ 2Ag¢(B.B)—2Ag(B, B)
V= [2A2g'(3, B) —2AAg/(B, B)] ’ (28)

where ’ denotes differentiation w.r.t. B. The two PM curves
are obtained by condition VF = 0:

APM: Ag(B, B) = Ag(B, B) and
BPM: Ag'(B, B) = Ag'(B, B).

(29a)
(29b)

Thus, the equations of two curves are similar except for the
replacement of g(B) with g’(B).

For AeB€ using log-norm

For function (1) and log-norm, expanding the functional
F(A, B) = [||log(a (A, B.€)—log(@ (A, B, €))[* de, we
have

E

F(A,B) = / [(log(A) — log(A)) + (B — [a)e]2 de. (30)
0

If we denote o = log(A), @ = log(A), p = B and = B,
we obtain
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3

E _ _
F(a, B)=E (a — a)2+? (B-B) +E>@—a) (B—B).

(3D

The gradient of this functional w.r.t parameters « and 8 is

VF =
7 [Ez(a —a)+ 2E3/3(B - B)
The condition gradient VF = 0 gives us equations of two
PM curves, which, in this case, are straight lines,

APM: (@ — @) + — (;3 B) =0and (33a)
_ 2 —
BPM: (¢ — @) + 5 (B—B) = (33b)
For (log(o) — A) /B using 2-norm
For function (2), we use only the 2-norm. Therefore,
p))
F(A,B) = / [€(A, B, o) —E(A,B,a)]zda (34a)

1
; 1 log(A)  log(A)\ T
og og
o (3-3)- (2
1
(34b)

Defining serbols o =log(A)/B,a = log(A)/l_?, B=1/B
and B = 1/B, the functional can be simplified as:

2¢3(c — @) (B — B).
35)

F(a,B) = 1@ —a) +¢(8—B)* —

by by by
Here, ¢ = [ do, ¢po= [ [log(o)]2 do, and ¢3 = [ log(o)do.
We note tlllat solving1 0F/0A = 0,0F/0 lolg(A)
or 0F/da = 0, all lead to the same equation. Or in other
words, any of those equations could be used to determine
APM curve. Therefore, for deriving the equation for APM
curve, we use d.F/da = 0 because of its simplicity:

$3(B — B) = d1(e — @), (36)
which is clearly a straight line in the (log(A)/B, 1/B) space

with slope ¢1 /¢3. This curve can be expressed in the original
(A, B) coordinates as:

11y log(A) _1og(A)
¢3<__E>_¢‘<T 5 ) (37)

@ Springer

However, /0B = 0 and dF /08 = O are different
curves. For BPM, its equation for the (log(A)/B, 1/B) space
is simply

(B — B) = ¢3(a — @), (38)
which is also a straight line in (log(A)/B, 1/B) space,

although with a slope ¢3/¢>. On the other hand, for (A, B)
and (log(A), B) spaces, equation of BPM curve is given by

_ $2 —¢3log(A) — 43 log(A) + ¢1 log(A) 1Og(A)
b2 — 2¢3log(A) + ¢ [log(A)]

| oo

(39)
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