137 research outputs found

    Postnatal adaptations of phosphatidylcholine metabolism in extremely preterm infants: implications for choline and PUFA metabolism

    Get PDF
    BACKGROUND: Lipid metabolism in pregnancy delivers PUFAs from maternal liver to the developing fetus. The transition at birth to diets less enriched in PUFA is especially challenging for immature, extremely preterm infants who are typically supported by total parenteral nutrition. OBJECTIVE: The aim was to characterize phosphatidylcholine (PC) and choline metabolism in preterm infants and demonstrate the molecular specificity of PC synthesis by the immature preterm liver in vivo. METHODS: This MS-based lipidomic study quantified the postnatal adaptations to plasma PC molecular composition in 31 preterm infants <28 weeks' gestational age. Activities of the cytidine diphosphocholine (CDP-choline) and phosphatidylethanolamine-N-methyltransferase (PEMT) pathways for PC synthesis were assessed from incorporations of deuterated methyl-D9-choline chloride. RESULTS: The concentration of plasma PC in these infants increased postnatally from median values of 481 (IQR: 387-798) µM at enrollment to 1046 (IQR: 616-1220) µM 5 d later (P < 0.001). Direct incorporation of methyl-D9-choline demonstrated that this transition was driven by an active CDP-choline pathway that synthesized PC enriched in species containing oleic and linoleic acids. A second infusion of methyl-D9-choline chloride at day 5 clearly indicated continued activity of this pathway. Oxidation of D9-choline through D9-betaine resulted in the transfer of 1 deuterated methyl group to S-adenosylmethionine. A very low subsequent transfer of this labeled methyl group to D3-PC indicated that liver PEMT activity was essentially inactive in these infants. CONCLUSIONS: This study demonstrated that the preterm infant liver soon after birth, and by extension the fetal liver, was metabolically active in lipoprotein metabolism. The low PEMT activity, which is the only pathway for endogenous choline synthesis and is responsible for hormonally regulated export of PUFAs from adult liver, strongly supports increased supplementation of preterm parenteral nutrition with both choline and PUFAs

    Metabolism of a synthetic compared with a natural therapeutic pulmonary surfactant in adult mice

    Get PDF
    Secreted pulmonary surfactant phosphatidylcholine (PC) has a complex intra-alveolar metabolism that involves uptake and recycling by alveolar type II epithelial cells, catabolism by alveolar macrophages, and loss up the bronchial tree. We compared the in vivo metabolism of animal-derived poractant alfa (Curosurf) and a synthetic surfactant (CHF5633) in adult male C57BL/6 mice. The mice were dosed intranasally with either surfactant (80 mg/kg body weight) containing universally 13C-labeled dipalmitoyl PC (DPPC) as a tracer. The loss of [U13C]DPPC from bronchoalveolar lavage and lung parenchyma, together with the incorporation of 13C-hydrolysis fragments into new PC molecular species, was monitored by electrospray ionization tandem mass spectrometry. The catabolism of CHF5633 was considerably delayed compared with poractant alfa, the hydrolysis products of which were cleared more rapidly. There was no selective resynthesis of DPPC and, strikingly, acyl remodeling resulted in preferential synthesis of polyunsaturated PC species. In conclusion, both surfactants were metabolized by similar pathways, but the slower catabolism of CHF5633 resulted in longer residence time in the airways and enhanced recycling of its hydrolysis products into new PC species

    ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism

    Get PDF
    Background Acyl-CoA binding domain containing protein 5 (ACBD5) is a peroxisomal membrane protein with a cytosolic acyl-CoA binding domain. Because of its acyl-CoA binding domain, ACBD5 has been assumed to function as an intracellular carrier of acyl-CoA esters. In addition, a role for ACBD5 in pexophagy has been suggested. However, the precise role of ACBD5 in peroxisomal metabolism and/or functioning has not yet been established. Previously, a genetic ACBD5 deficiency was identified in three siblings with retinal dystrophy and white matter disease. We identified a pathogenic mutation in ACBD5 in another patient and studied the consequences of the ACBD5 defect in patient material and in ACBD5-deficient HeLa cells to uncover this role. Methods We studied a girl who presented with progressive leukodystrophy, syndromic cleft palate, ataxia and retinal dystrophy. We performed biochemical, cell biological and molecular studies in patient material and in ACBD5-deficient HeLa cells generated by CRISPR-Cas9 genome editing. Results We identified a homozygous deleterious indel mutation in ACBD5, leading to complete loss of ACBD5 protein in the patient. Our studies showed that ACBD5 deficiency leads to accumulation of very longchain fatty acids (VLCFAs) due to impaired peroxisomal beta-oxidation. No effect on pexophagy was found. Conclusions Our investigations strongly suggest that ACBD5 plays an important role in sequestering C26-CoA in the cytosol and thereby facilitates transport into the peroxisome and subsequent beta-oxidation. Accordingly, ACBD5 deficiency is a novel single peroxisomal enzyme deficiency caused by impaired VLCFA metabolism and leading to retinal dystrophy and white matter disease.Supported in part by funding through the Marie Curie Initial Training Networks (ITN) action to KDF, MS and HRW (FP7-2012-PERFUME-316723). MS is supported by the Biotechnology and Biological Sciences Research Council (BB/K006231/1; BB/N01541X/1)

    Computational Integration of Homolog and Pathway Gene Module Expression Reveals General Stemness Signatures

    Get PDF
    The stemness hypothesis states that all stem cells use common mechanisms to regulate self-renewal and multi-lineage potential. However, gene expression meta-analyses at the single gene level have failed to identify a significant number of genes selectively expressed by a broad range of stem cell types. We hypothesized that stemness may be regulated by modules of homologs. While the expression of any single gene within a module may vary from one stem cell type to the next, it is possible that the expression of the module as a whole is required so that the expression of different, yet functionally-synonymous, homologs is needed in different stem cells. Thus, we developed a computational method to test for stem cell-specific gene expression patterns from a comprehensive collection of 49 murine datasets covering 12 different stem cell types. We identified 40 individual genes and 224 stemness modules with reproducible and specific up-regulation across multiple stem cell types. The stemness modules included families regulating chromatin remodeling, DNA repair, and Wnt signaling. Strikingly, the majority of modules represent evolutionarily related homologs. Moreover, a score based on the discovered modules could accurately distinguish stem cell-like populations from other cell types in both normal and cancer tissues. This scoring system revealed that both mouse and human metastatic populations exhibit higher stemness indices than non-metastatic populations, providing further evidence for a stem cell-driven component underlying the transformation to metastatic disease

    Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features

    Get PDF
    BACKGROUND: Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. METHODS AND FINDINGS: To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH) arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases), SHH signaling (B; 15 cases), expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively) or photoreceptor genes (D and E; both 11 cases). Mutations in beta-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E. Patients below 3 yrs of age had type B, D, or E tumors. Type B included most desmoplastic cases. We validated and confirmed the molecular subtypes and their associated clinicopathological features with expression data from a second independent series of 46 medulloblastomas. CONCLUSIONS: The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease. It will enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies. Ultimately, our results may lead to more individualized therapies with improved cure rates and a better quality of life

    Do Biofilm Formation and Interactions with Human Cells Explain the Clinical Success of Acinetobacter baumannii?

    Get PDF
    BACKGROUND: The dramatic increase in antibiotic resistance and the recent manifestation in war trauma patients underscore the threat of Acinetobacter baumannii as a nosocomial pathogen. Despite numerous reports documenting its epidemicity, little is known about the pathogenicity of A. baumannii. The aim of this study was to obtain insight into the factors that might explain the clinical success of A. baumannii. METHODOLOGY/PRINCIPAL FINDINGS: We compared biofilm formation, adherence to and inflammatory cytokine induction by human cells for a large panel of well-described strains of A. baumannii and compared these features to that of other, clinically less relevant Acinetobacter species. Results revealed that biofilm formation and adherence to airway epithelial cells varied widely within the various species, but did not differ among the species. However, airway epithelial cells and cultured human macrophages produced significantly less inflammatory cytokines upon exposure to A. baumannii strains than to strains of A. junii, a species infrequently causing infection. CONCLUSION/SIGNIFICANCE: The induction of a weak inflammatory response may provide a clue to the persistence of A. baumannii in patients

    A Novel Extracytoplasmic Function (ECF) Sigma Factor Regulates Virulence in Pseudomonas aeruginosa

    Get PDF
    Next to the two-component and quorum sensing systems, cell-surface signaling (CSS) has been recently identified as an important regulatory system in Pseudomonas aeruginosa. CSS systems sense signals from outside the cell and transmit them into the cytoplasm. They generally consist of a TonB-dependent outer membrane receptor, a sigma factor regulator (or anti-sigma factor) in the cytoplasmic membrane, and an extracytoplasmic function (ECF) sigma factor. Upon perception of the extracellular signal by the receptor the ECF sigma factor is activated and promotes the transcription of a specific set of gene(s). Although most P. aeruginosa CSS systems are involved in the regulation of iron uptake, we have identified a novel system involved in the regulation of virulence. This CSS system, which has been designated PUMA3, has a number of unusual characteristics. The most obvious difference is the receptor component which is considerably smaller than that of other CSS outer membrane receptors and lacks a β-barrel domain. Homology modeling of PA0674 shows that this receptor is predicted to be a bilobal protein, with an N-terminal domain that resembles the N-terminal periplasmic signaling domain of CSS receptors, and a C-terminal domain that resembles the periplasmic C-terminal domains of the TolA/TonB proteins. Furthermore, the sigma factor regulator both inhibits the function of the ECF sigma factor and is required for its activity. By microarray analysis we show that PUMA3 regulates the expression of a number of genes encoding potential virulence factors, including a two-partner secretion (TPS) system. Using zebrafish (Danio rerio) embryos as a host we have demonstrated that the P. aeruginosa PUMA3-induced strain is more virulent than the wild-type. PUMA3 represents the first CSS system dedicated to the transcriptional activation of virulence functions in a human pathogen

    Relationship of device measured physical activity type and posture with cardiometabolic health markers: pooled dose–response associations from the Prospective Physical Activity, Sitting and Sleep Consortium

    Get PDF
    Aims/hypothesis: The aim of this study was to examine the dose–response associations of device-measured physical activity types and postures (sitting and standing time) with cardiometabolic health. Methods: We conducted an individual participant harmonised meta-analysis of 12,095 adults (mean ± SD age 54.5±9.6 years; female participants 54.8%) from six cohorts with thigh-worn accelerometry data from the Prospective Physical Activity, Sitting and Sleep (ProPASS) Consortium. Associations of daily walking, stair climbing, running, standing and sitting time with a composite cardiometabolic health score (based on standardised z scores) and individual cardiometabolic markers (BMI, waist circumference, triglycerides, HDL-cholesterol, HbA1c and total cholesterol) were examined cross-sectionally using generalised linear modelling and cubic splines. Results: We observed more favourable composite cardiometabolic health (i.e. z score <0) with approximately 64 min/day walking (z score [95% CI] −0.14 [−0.25, −0.02]) and 5 min/day stair climbing (−0.14 [−0.24, −0.03]). We observed an equivalent magnitude of association at 2.6 h/day standing. Any amount of running was associated with better composite cardiometabolic health. We did not observe an upper limit to the magnitude of the dose–response associations for any activity type or standing. There was an inverse dose–response association between sitting time and composite cardiometabolic health that became markedly less favourable when daily durations exceeded 12.1 h/day. Associations for sitting time were no longer significant after excluding participants with prevalent CVD or medication use. The dose–response pattern was generally consistent between activity and posture types and individual cardiometabolic health markers. Conclusions/interpretation: In this first activity type-specific analysis of device-based physical activity, ~64 min/day of walking and ~5.0 min/day of stair climbing were associated with a favourable cardiometabolic risk profile. The deleterious associations of sitting time were fully attenuated after exclusion of participants with prevalent CVD and medication use. Our findings on cardiometabolic health and durations of different activities of daily living and posture may guide future interventions involving lifestyle modification

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore