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ABSTRACT 
 
Background 

Acyl-CoA binding domain containing protein 5 (ACBD5) is a peroxisomal membrane protein with a 

cytosolic acyl-CoA binding domain. Because of its acyl-CoA binding domain, ACBD5 has been 

assumed to function as an intracellular carrier of acyl-CoA esters. In addition, a role for ACBD5 in 

pexophagy has been suggested. However, the precise role of ACBD5 in peroxisomal metabolism 

and/or functioning has not yet been established. Previously, a genetic ACBD5 deficiency was 

identified in three siblings with retinal dystrophy and white matter disease. We identified a pathogenic 

mutation in ACBD5 in another patient and studied the consequences of the ACBD5 defect in patient 

material and in ACBD5-deficient HeLa cells to uncover this role. 

Methods 

We studied a girl who presented with progressive leukodystrophy, syndromic cleft palate, ataxia and 

retinal dystrophy. We performed biochemical, cell biological and molecular studies in patient material 

and in ACBD5-deficient HeLa cells generated by CRISPR-Cas9 genome editing. 

Results 

We identified a homozygous deleterious indel mutation in ACBD5, leading to complete loss of ACBD5 

protein in the patient. Our studies showed that ACBD5 deficiency leads to accumulation of very long-

chain fatty acids (VLCFAs) due to impaired peroxisomal beta-oxidation. No effect on pexophagy was 

found. 

Conclusions 

Our investigations strongly suggest that ACBD5 plays an important role in sequestering C26-CoA in 

the cytosol and thereby facilitates transport into the peroxisome and subsequent beta-oxidation. 

Accordingly, ACBD5 deficiency is a novel single peroxisomal enzyme deficiency caused by impaired 

VLCFA metabolism and leading to retinal dystrophy and white matter disease.  

KEYWORDS 
 
Peroxisomal disorder, peroxisomal beta-oxidation, pexophagy, very long-chain fatty acids, acyl-CoA 

binding domain containing protein 5, peroxisomal single enzyme deficiency  
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INTRODUCTION 

Peroxisomes play an important role in a number of essential metabolic pathways, including the 

biosynthesis of ether phospholipids and bile acids, the α- and β-oxidation of fatty acids, and the 

detoxification of glyoxylate and of reactive oxygen species generated in peroxisomes, i.e. hydrogen 

peroxide and superoxide.[1] Defects in human genes encoding peroxisomal proteins can result in 

different peroxisomal disorders with variable severity ranging from early lethality to subtle 

neurosensory abnormalities.[2, 3] The peroxisomal disorders are subdivided in two main classes: 1) 

the peroxisome biogenesis disorders, which include the Zellweger spectrum disorders and Rhizomelic 

chondrodysplasia punctata (RCDP) type 1 and 5, and 2) the single peroxisomal enzyme 

deficiencies.[3] In the first class multiple peroxisomal metabolic pathways are impaired, resulting in 

multiple metabolic abnormalities, whereas in the second class only the metabolic pathways, in which 

the defective enzyme participates, are impaired.[1] The clinical, biochemical and genetic spectrum of 

peroxisomal disorders is broad and still expanding. For example, recently, Heimler syndrome was 

recognized as a mild presentation of the Zellweger spectrum [4] and two novel types of RCDP (4 and 

5) [5, 6] were identified. In this paper we report a novel peroxisomal single enzyme deficiency affecting 

the peroxisomal beta-oxidation of very long-chain fatty acids (VLCFAs), due to a deficiency of Acyl-

CoA binding domain containing protein 5 (ACBD5). 

ACBD5 is a peroxisomal membrane protein of 54.7-kDa with a C-terminal membrane-spanning region 

and an N-terminal cytosolic acyl-CoA binding domain. The peroxisomal localization of ACBD5 was 

established by proteomic analysis of purified peroxisomes from mouse kidney,[7] rat liver,[8, 9] and 

human liver [10] and confirmed by co-localization studies in cultured cells.[7, 8, 11] Because of its 

acyl-CoA binding domain, ACBD5 has been assumed to function as an intracellular carrier of acyl-CoA 

esters.[12] More recently, a role for ACBD5 in the degradation of peroxisomes, i.e. pexophagy, has 

been suggested mainly based on sequence similarity with the ATG37 protein of the yeast Pichia 

pastoris, which was implicated in this process.[11] However, the precise role of ACBD5 in peroxisomal 

metabolism and functioning had not been established.  

Previously, a heterozygous missense variant in ACBD5 was reported to cosegregate with autosomal 

dominant thrombocytopenia by Punzo et al.,[13] but a year later Pippucci et al. reported that the actual 

pathogenic mutations in this family and 7 additional families causing autosomal dominant 

thrombocytopenia are in the ANKRD26 and not the ACBD5 gene.[14] In 2013, exome sequencing of a 

large cohort of patients with retinal dystrophy identified three siblings with a genetic ACBD5 deficiency 

caused by a homozygous splice site mutation, but the pathogenic, physiological and functional 

consequences of the defect were not studied.[15] The retinal dystrophy was described as syndromic in 

the three siblings because of the combination with severe white matter disease and spastic 

paraparesis. 

Here, we report in detail the clinical presentation of an ACBD5-deficient patient, who presented with 

progressive leukodystrophy associated with syndromic cleft palate, ataxia and retinal dystrophy. We 

furthermore show that the ACBD5 defect leads to accumulation of VLCFAs as a result of an impaired 

peroxisomal beta-oxidation of these fatty acids. Based on our findings, we postulate that ACBD5 

functions as a peroxisomal membrane-bound receptor for VLCFA-CoAs. 
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MATERIALS & METHODS 

Patient 

The parents of the patient signed an informed consent approving the research. 

Metabolic, biochemical and microscopical analyses 

Concentrations of VLCFAs, phytanic and pristanic acid were determined in plasma as described in 

[16] and VLCFAs and C26:0 lysophosphatidylcholine (C26:0 lysoPC) were measured in cultured cells 

as described previously.[17, 18] Peroxisomal beta-oxidation of the VLCFA hexacosanoic acid (C26:0) 

and pristanic acid were measured as described.[19] A D3-C22:0 loading test was performed by 

loading cells for three days with deuterated (D3) C22:0 followed by fatty acid analysis with tandem 

mass spectrometry essentially as previously described,[20] but with D3-C22:0 instead of D3-C24:0.  

Immunoblot analysis was performed with cell homogenates, which were separated by SDS-

polyacrylamide gel electrophoresis, and subsequently transferred onto a nitrocellulose membrane 

using semidry blotting. We used rabbit polyclonal antibodies against ACBD5 (HPA012145, Sigma, 

directed against aa161-301, and AP9143a, Abgent, directed against aa69-98) at a 1:1000 dilution and 

mouse monoclonal antibodies against α-tubulin (T6199, Sigma) at a 1:2000 dilution or against β-actin 

(A5441, Sigma Alderich) at a 1:10.000 dilution. For visualization we used the secondary antibodies 

IRDye 800CW goat anti-rabbit and/or IRDye 680CW donkey anti-mouse with the Odyssey Infrared 

Imaging System (LI-COR Biosciences, Nebraska, USA). 

For immunofluorescence microscopy, skin fibroblasts were cultured on cover slips to a confluency of 

approximately 60 to 70%. Cells were fixed and permeabilised with phosphate-buffered saline (PBS, 

Fresenius Kabi GmbH, Austria) solution containing 2% paraformaldehyde (Merck 8.18715.0100) and 

0.1% Triton-X100 (BIO RAD 161-0407, 20’). After inactivating triton-X100 with 100 mM ammonium 

chloride (Merck 1.01145.1000, 10’), the cells were consecutively incubated with first and secondary 

antibodies and streptavidine-FITC complex (DAKO F 422) diluted in 1%BSA in PBS solutions for 5 

minutes. The glass slides were fixed on objective slides with mounting medium Vectashield H1000 

(Brunswick) and imaged using the fluorescence microscope Zeiss Axio Observer A1. We used primary 

antibodies against catalase (mouse monoclonal, Mab 17E10, own generation), ACBD5 (rabbit 

polyclonal, Sigma, HPA012145, diluted 1:500) and PMP70 (rabbit polyclonal, Zymogen, 718300, 

diluted 1:500), and as secondary antibodies Alexa Fluor® 555 Rabbit IgG (Z25305, ThermoFisher, 

diluted 1:500) or goat anti-mouse IgG antibody (DAKO, E433, diluted 1:200) or streptavidine-FITC 

complex (Bender Medsystems, diluted 1:200). 

Cell culturing, transfections and functional complementation 

Primary skin fibroblasts and HeLa cells were cultured in Ham’s F-10 medium (Lonza, Basel, 

Switzerland) or Dulbecco’s modified Eagle’s medium (DMEM) with L-glutamine (Bio-Whittaker) 

supplemented with 10% fetal bovine serum (Bio-Whittaker), 25 mM HEPES buffer (BioWhittaker), 100 

U/ml penicillin, 100 mg/ml streptomycin (Life Technologies), and 250 ng/ml fungizone (Life 

Technologies) in a humidified atmosphere of 5% CO2 at 37⁰C.  

Transfection of HeLa cells was performed in 6-well plates using the jetPRIME® DNA transfection kit 

(Polyplus transfection, Illkirch-Graffenstaden, France) according to the manufacturer’s instructions. 

Transfection of skin fibroblasts was performed using the AMAXA NHDF Nucleofector Kit (Lonza, 

Basel, Switzerland) according to the manufacturer’s instructions (program U23).  

For functional complementation we transfected patient’s skin fibroblasts with the plasmid pcDNA3.1-

hsACBD5, containing full-length human ACBD5 cDNA (1.5kb). The medium was changed 24 hours 

after transfection. For immunofluorescence microscopy, cells were imaged 3 days after transfection. 

For the D3-C22:0 loading test, D3-C22:0 was added to the medium one day after transfection and fatty 
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acid analysis was performed three days later. C26:0 lysoPC was measured in cell pellets four days 

after transfection. 

Genetic analysis 

Genomic DNA was isolated from skin fibroblasts using the NucleoSpin Tissue genomic DNA 

purification kit (Macherey-Nagel, Germany, Düren). All forward and reverse primers used for 

sequencing (available upon request) were tagged with a -21M13 (5’-TGTAAAACGACGGCCAGT-3’) 

sequence or M13rev (5’-CAGGAAACAGCTATGACC-3’) sequence, respectively. PCR fragments were 

sequenced in two directions using ‘-21M13’ and ‘M13rev’ primers by means of BigDye Terminator v1.1 

Cycle Sequencing Kits (Applied Biosystems, Foster City, CA, USA) and analyzed on an Applied 

Biosystems 3130x1 or 3730x1 DNA analyzer, following the manufacturer’s protocol (Applied 

Biosystems, Foster City, CA, USA). ACBD5 sequence data were compared with the 

reference ACBD5 sequence (GenBank accession No. NM_145698.4) with nucleotide numbering 

starting at the first adenine of the translation initiation codon ATG. 

Generation of ACBD5-deficient HeLa cells by Crispr-Cas9 

The CRISPR-Cas9 genome editing technology as described by Ran 2013 was used to introduce a 

disruption of the ACBD5 gene in HeLa cells.[21] To this end, two complementary oligonucleotides 

coding for a guide RNA upstream of a PAM site in exon 2 (5’-CGG, c.124_122) of the ACBD5 gene 

were designed using the online CRISPR design tool (http://crispr.mit.edu/). The two oligo’s were 

annealed and subsequently cloned into the pX458(-pSpCasq(BB)-2A-GFP) plasmid,[21] followed by 

Sanger sequencing of the insert to confirm the correct sequence.  HeLa cells were transfected with 2 

µg plasmid, and single GFP-positive cells were sorted into wells of a 96 wells plate using FACS flow 

cytometry (S800H Cell Sorter, Sony) as described.[21] After 3-4 weeks, DNA was isolated from the 

expanded single colonies and exon 2 of the ACBD5 gene was PCR-amplified using Phire hot start II 

DNA polymerase (ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturer’s 

instructions and subsequently Sanger sequenced. We sequenced multiple clonal cells and found 

several with compound heterozygous mutations in ACBD5, suggesting that the HeLa cells were not 

aneuploid for the ACBD5 gene. For subsequent studies we used cells (HeLa∆ACBD5) that were 

apparent homozygous for the c.128insA mutation (p.V42fs*3), which was the most commonly found 

mutation among the clonal cells. Technically, however, we cannot exclude that these cells were 

hemizygous for the c.128insA mutation. The HeLa∆ACBD5 cells were analyzed by immunoblotting to 

confirm the absence of ACBD5 protein and used for further experiments. The two putative off target 

regions of the TLE6 and DBNDD2 genes predicted by the online CRISPR design tool were 

sequenced, but did not contain mutations. 

 

Pexophagy assay 

To assess pexophagy in cells, we set up a similar Red-Green lysosome assay as described in [11, 22] 

using mCherry-GFP-SKL as peroxisomal reporter. Cells were cultured in live cell chambers (CELLview 

cell culture dishes  (Greiner Bio-One, Kremsmünster, AT), which allowed to follow the development in 

time and prevented any influence of fixation on intracellular pH. Cells were transfected with 2 µg 

mCherry-GFP-SKL plasmid as described above. Twenty four hours after transfection the cells were 

either cultured in the presence of lysosomal protease inhibitors in order to prevent mCherry-GFP 

degradation in the lysosome (2 µM E-64 and 250 µM leupeptin (Enzo Life Sciences, East 

Farmingdale, NY, USA) or in the presence of the autophagy inhibitor 3-methyladenine (3-MA, Sigma-

Aldrich, St. Louis, MO, USA). 

Live cells were imaged with a Leica TCS SP8 filter-free spectral confocal microscope. Acquisition 

settings were adjusted to achieve a red and green signal of approximately equal intensity and 
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subsequently the same settings were used throughout the experiments. Red and green channel 

images were acquired simultaneously in order to prevent disturbances by peroxisomal movement. 

Excitation wavelengths of 489 or 587 nm were used for the green or red signal, respectively, and 

emission spectra were obtained at 499-550 nm or 597-671 nm, respectively (HyD SMD detectors, 

laser intensity 3%). The pixel size was between 42-44 nm. Ten to 40 images of cells per condition 

were acquired in 2 or 3 different areas of the live cell chambers; each image containing one single 

fibroblast or 1-4 HeLa cells. 

Image processing was performed off-line using a commercial software package (MATLAB 

R2015a, The MathWorks Inc., Natick, MA, 2000). In summary, background noise was removed, 

peroxisomes were labelled and the red to green intensity for each of the peroxisomes was measured 

and analyzed. Background signals and non-peroxisomal signals were removed by processing the 

images of the red and green channel separately before merging them. To this end, we used multiple 

filters to remove the background signal, and additionally created a “mask”, which only selects 

peroxisomes. This mask consists exclusively of areas with high intensity of green and/or red signal. 

Areas with a minimum of 10 pixels were labelled as peroxisomes and used for quantification. The ratio 

of red to green signal (R/G) in each pixel was calculated, the number of pixels with an average R/G > 

3 quantified (“red-only” pixels). For this study we defined fibroblasts with at least 20% “red-only” pixels 

as pexophagy-induced cells. In all HeLa cells the overall amount of “red-only” signal was below 20%, 

but peroxisomes undergoing pexophagy were clearly discernible by their bright red color. We defined 

HeLa cells as pexophagy-induced, when they displayed at least one of those bright red peroxisomes 

and quantified them manually (see also only online supplementary figure S3).  
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RESULTS 

Case description 

The patient, a girl, is one of three siblings from healthy consanguineous parents from the United Arab 

Emirates. Her sisters are both neurologically healthy, but one sister has been found to have a 

homozygous mutations in MCR4 leading to morbid obesity. The patient was born full term by 

spontaneous vaginal delivery after a pregnancy complicated only by gestational diabetes managed 

with dietary changes. She was born with a cleft palate, for which correction was performed at six 

months, but appeared otherwise normal in the first months of life. At age seven months, she presented 

with abnormal eye movements and was diagnosed with retinal rod-cone dystrophy. She had delayed 

gains of motor skills; although she walked independently at one year, her gait was unsteady and she 

continued to need to hold on to objects to rise from the floor, which initially was attributed to her visual 

impairment.  By two years of age, her gait had become progressively abnormal. She started to speak 

in sentences at the age of two and a half years and her cognitive function appeared relatively 

preserved.  

By four years of age, however, it became apparent that her vocabulary was limited and she was 

dysarthric, despite normal hearing. She had developed a progressive microcephaly with facial 

dysmorphisms, including a tubular nose, hypotelorism, prominent ears, bilateral ptosis and rotatory 

nystagmus. Her motor dysfunction was marked,with a positive Gowers and proximal weakness, as 

well as increased extrapyramidal and pyramidal tone in her arms and legs. Her gait was wide-based 

with truncal titubation and waddling, and finger-nose-finger testing was remarkable for mild dysmetria. 

Over time, her gait became increasingly unbalanced. She developed greater difficulty with walking, 

descending stairs and decreased endurance with increased falling, and by the age of 9 years could 

walk only with two handed assistance or short distances with a walker. Brain MRI (see figure 1) at the 

age of 4 years revealed hypomyelination with diffuse T2 signal abnormality in deep white matter signal 

abnormalities with relative sparing of the subcortical U fibers. Signal abnormality was also seen to be 

involving the long tracts in the brainstem including the pyramidal tracts, the medial lemniscus, and the 

inferior cerebellar peduncles. 

 

Peroxisomal investigations in blood and skin fibroblasts 

Extensive laboratory testing including metabolic screening did not reveal clear abnormalities except for 

mildly increased plasma VLCFA levels (see Table 1). VLCFA analysis was repeated in a later sample 

and remained abnormal. In addition, C26:0 lysoPC and C26-acylcarnitine levels in bloodspot were 

increased. Other peroxisomal parameters in blood were normal (i.e. plasma phytanic acid, pristanic 

acid and pipecolic acid, and plasmalogens in erythrocytes). Based on the abnormal VLCFA profile a 

peroxisomal disorder was suspected, in particular acyl-CoA oxidase 1 (ACOX1) deficiency, affecting 

the first enzyme in peroxisomal VLCFA oxidation, or carriership of X-linked adrenoleukodystrophy (X-

ALD). Both defects were excluded by Sanger sequencing of the genes involved (i.e. ACOX1 and 

ABCD1). Subsequently, peroxisomal studies were performed in cultured primary skin fibroblasts of the 

patient. Immunofluorescence microscopy analyses with antibodies against the peroxisomal matrix 

protein catalase and the peroxisomal membrane proteins ABCD1 and ABCD3 revealed the normal 

presence of import-competent peroxisomes in fibroblasts of the patient. In addition, immunoblot 

analysis revealed normal peroxisomal processing of ACOX1 and peroxisomal thiolase, confirming 

normal peroxisome biogenesis in fibroblasts of the patient. VLCFA analysis showed that also in 

fibroblasts the C26:0 level was clearly increased with an increased C26:0/C22:0 ratio (see Table 1). In 

addition, C26:0 lysoPC was increased in fibroblasts showing that VLCFA levels in the phospholipid 

fraction are increased. To study the underlying cause of the C26:0 accumulation, peroxisomal fatty 

acid oxidation studies were performed with different radiolabeled substrates. Phytanic acid alpha-

oxidation and pristanic acid beta-oxidation activities were normal compared to the reference values, 
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but C26:0 beta-oxidation was reduced (Table 1). The C26:0 beta-oxidation activity was decreased to 

33% of the mean activity in the control fibroblasts within the same experiment. However, the activities 

of the enzymes involved in peroxisomal beta-oxidation of VLCFAs, i.e. ACOX1, D-bifunctional protein 

and Sterol carrier protein X, were not decreased when measured in a fibroblast homogenate. To 

further study VLCFA metabolism, we performed a loading study with deuterium labeled C22:0 (D3-

C22:0). Fibroblasts were incubated with 30 µM D3-C22:0 for three days followed by fatty acid analysis 

with tandem-mass spectrometry. Both D3-C26:0 and D3-C28:0 levels were increased compared to the 

levels in the control fibroblasts analyzed in the same experiment showing increased chain elongation 

from the substrate D3-C22:0 most likely because of increased substrate availability due to impaired 

peroxisomal breakdown of D3-C22:0 (Table 2). Also unlabeled C26:0 levels were increased in this 

analysis with an increased C26:0/C22:0 ratio. The extent of the accumulation of the labeled and 

unlabeled VLCFAs was similar in fibroblasts of an X-ALD patient analyzed in the same experiment. 

Table 1: Biochemical parameters in blood and fibroblasts of the patient 

  Patient Reference values 

Blood C26:0 lysoPC
a
 (nmol/l)  166 29-72 

 C26-carnitine
a
 (µmol/l) 0.099 0.014-0.077 

 C26:0
b 
(µg/ml)

 
0.43 0.05-0.41 

 C26:0/C22:0 0.025 0.002-0.018 

 C24:0/C22:0 1.29 0.64-1.04 

    

Fibroblasts VLCFAs (µmol/g)   

 C22:0 3.01/4.40
c
 3.84-10.20 

 C24:0 7.65/9.23
c
 7.76-17.66 

 C26:0 1.07/1.14
c
 0.18-0.38 

 C26:0/C22:0 0.35/0.26
c
 0.03-0.07 

 C24:0/C22:0 2.54/2.10
c
 1.55-2.30 

 C26:0 lysoPC 32 2-14 

    

 Fatty acid oxidation activity (pmol/(hr.mg))   

 Phytanic acid alpha-oxidation 31 28-95 

 Pristanic acid beta-oxidation 1086 748-975 

 C26:0 beta-oxidation 437 1273-1431 

    

 Activity of peroxisomal enzymes   

 DHAPAT (nmol/(2h.mg)) 9.8 5.4-10.6 

 ACOX1 (pmol/(min.mg)) 285 74-206 

 DBP hydratase (pmol/(min.mg)) 143 115-600 

 DBP dehydrogenase 

(pmol/(min.mg)) 

54 25-300 
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 SCPx (pmol/(min.mg)) 20 10-39 

a
 measured in blood spot, 

b
 measured in plasma, 

c 
two independent measurements. Units are 

indicated between parentheses. Highlighted values are outside reference range 

VLCFAs, Very long-chain fatty acids; DHAPAT, dihydroxy acetonephosphate acyltransferase; ACOX1, 
acyl-CoA oxidase 1; DBP, D-bifunctional protein; SCPx, sterol carrier protein X.  

Table 2: D3-C22:0 loading test in fibroblasts 

 Patient X-ALD Control 1 Control 2 

D3-C28:0 (µmol/g) 0.22 0.13 n.d. n.d. 

D3-C26:0 (µmol/g) 1.53 1.86 0.67 0.24 

D3-C24:0 (µmol/g) 12.87 19.93 12.75 11.02 

C26:0 (µmol/g) 0.26 0.45 0.01 0.02 

C26:0/C22:0 0.15 0.17 0.01 0.01 

C24:0/C22:0 2.27 2.25 2.19 1.97 

n.d., not detectable; X-ALD, X-linked adrenoleukodystrophy. Units are indicated between parentheses. 

 

Genetic analysis and functional complementation studies 

Because of the impaired peroxisomal beta-oxidation of C26:0 and the absence of mutations in ACOX1 

and ABCD1, we considered ACBD5, which encodes a peroxisomal membrane protein with a putative 

acyl-CoA binding domain, as a candidate gene. We performed molecular analysis of ACBD5 by 

Sanger sequencing and identified a homozygous deleterious c.626-689_937-

234delins936+1075_c.936+1230inv mutation (NM145698.4, see online supplementary figure S1). This 

mutation causes the deletion of exon 7 and 8 and is predicted to create a premature stop codon 

(p.D208Vfs*30). Both parents were heterozygous for this mutation, confirming homozygosity. 

Immunoblot analysis and immunofluorescence analysis with antibodies against ACBD5 demonstrated 

the absence of ACBD5 in fibroblasts of the patient (figure 2). To determine if the mutation in ACBD5 

was the underlying cause of the accumulation of VLCFAs in the patient, we transfected wild type 

ACBD5 cDNA into the patient’s fibroblasts followed by C26:0 lysoPC measurement and a D3-C22:0 

loading test. ACBD5 expression was confirmed by immunoblot analysis (not shown). Four days after 

transfection the C26:0 lysoPC concentration had decreased from 29 in the mock-transfected cells to 

18 µmol/g in the ACBD5-transfected cells (Table 3), which is just above the upper limit of the 

reference range in fibroblasts (2-14 µmol/g). Fatty acid analysis three days after loading the 

transfected cells with D3-C22:0 revealed a significant decrease in the levels of D3-C28:0 and D3-

C26:0 compared to the mock transfected cells (Table 3). Also the level of unlabeled C26:0 was 

significantly reduced with a decrease in C26:0/C22:0 ratio. These results show that the impaired 

VLCFA metabolism in the patient’s cells is caused by ACBD5 deficiency and can be rescued by 

introduction of wild type ACBD5.  

 

Table 3: D3-C22:0 loading test and C26:0 lysoPC measurement after transfection of patient’s 

fibroblasts with ACBD5 cDNA 

 mock ACBD5 
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D3-C28:0 (µmol/g) 0.17 ± 0.01 0.05 ± 0.01* 

D3-C26:0 (µmol/g) 2.20 ± 0.22 1.13 ± 0.13* 

D3-C24:0 (µmol/g) 15.30 ± 1.51 12.52 ± 0.48 

C26:0 (µmol/g) 0.35 ± 0.02 0.14 ± 0.06* 

C26:0/C22:0 0.31 ± 0.13 0.15 ± 0.05 

C24:0/C22:0 2.57 ± 0.96 2.60 ± 0.21 

   

C26:0 lysoPC (µmol/g) 29 18 

Fibroblasts were transfected with expression vector pcDNA3 (mock) or with pcDNA3 containing wild 

type ACBD5 cDNA (ACBD5), n=3, mean ± SD. Units are indicated between parentheses. * indicates 

p≤0.005, Student t-test. D3, deuterated; lysoPC, lysophosphatidylcholine 

 

Functional analysis of ACBD5 in HeLa cells 

To confirm that ACBD5 deficiency causes VLCFA accumulation and to study the specific role of 

ACBD5 in peroxisome metabolism further, we introduced ACBD5 deficiency in HeLa cells by CRISPR-

Cas9 genome editing. For our analysis we used HeLa cells which were apparent homozygous for a 

nucleotide insertion in exon 2 of ACBD5 (c.128InsA, p.V42fs*3), which – similar to the patient’s cells – 

resulted in the complete absence of the ACBD5 protein in the HeLa cells (HeLa∆ACBD5) as 

confirmed by immunoblotting (see online supplementary figure S2). Peroxisomal investigations of 

these cells confirmed the findings in the primary patient’s fibroblasts. The VLCFA profile was abnormal 

in HeLa∆ACBD5 cells with an increased C26:0 level (0.18 µmol/g versus 0.053 in HeLa) and 

increased C26:0/C22:0 ratio (0.26 versus 0.07 in HeLa). C26:0 lysoPC was also increased in 

HeLa∆ACBD5 cells (0.087 µmol/g versus 0.027 in HeLa). In addition, C26:0 beta-oxidation activity 

was reduced in HeLa∆ACBD5 cells (583 pmol/(hr.mg protein) versus 971 in HeLa) and loading with 

D3-C22:0 resulted in accumulation of D3-C26:0 (0.34 µmol/g versus 0.15 in HeLa) just like in patient’s 

fibroblasts. These results confirm that a deficiency of ACBD5 results in impaired peroxisomal VLCFA 

metabolism. 

 

Role of ACBD5 in pexophagy? 

Recently it has been suggested that, based on sequence similarity with ATG37 from the yeast Pichia 

pastoris, ACBD5 might play a role in pexophagy.[11] We studied this aspect in both the ACBD5-

deficient patient’s fibroblasts and HeLa∆ACBD5 cells. To this end we used a previously described 

Red-Green lysosome pexophagy assay, in which a fusion protein composed of mCherry and GFP 

followed by a C-terminal peroxisomal targeting motif is expressed in cells. Expression of this fusion 

protein in cells predominantly results in yellow labelled peroxisomes whereas peroxisomes subject to 

pexophagy are “red-only” due to quenching of the green GFP fluorescence in the acidic environment 

of lysosomes.  

We did not observe a difference in the level of pexophagy between control and ACBD5-deficient 

patient’s fibroblasts upon expression of the reporter construct, while control cells treated with the 

autophagy inhibitor 3-MA showed a markedly lower number of pexophagy-induced cells (see figure 3 

and online supplementary figure S3).We also performed the Red-Green lysosome assay in control and 

the ACBD5-deficient HeLa cells, a cell type used previously for this assay.[11, 22] Also in this cell 

system, the level of pexophagy in ACBD5-deficient HeLa cells was similar to the level in control HeLa 
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cells, while it was clearly decreased when the cells were treated with the autophagy inhibitor 3-MA 

(see figure 3 and online supplementary figure S3). 
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DISCUSSION 

We report the identification and characterization of a patient with a deficiency of ACBD5 and show that 

ACBD5 deficiency is a novel single peroxisomal enzyme deficiency causing an impaired VLCFA 

metabolism. Screening of peroxisomal parameters in blood revealed an abnormal VLCFA profile and 

accumulation of C26:0 lysoPC. Furthermore, studies in the patient’s fibroblasts revealed an impaired 

VLCFA metabolism as concluded from: 1) an abnormal VLCFA profile with increased concentration of 

C26:0 and increased C26:0/C22:0 ratio, 2) increased C26:0 lysoPC level showing an increased C26:0 

concentration in the phospholipid fraction, 3) reduced peroxisomal C26:0 beta-oxidation activity but 

normal pristanic acid oxidation activity and 4) accumulation of D3-C26:0 and D3-C28:0 after loading 

fibroblasts with D3-C22:0 indicative of increased chain elongation due to increased substrate 

availability.  

The ACBD5 defect in the patient was demonstrated by molecular analysis of the encoding gene and 

analysis of protein expression. The patient was homozygous for a deleterious c.626-689_937-

234delins936+1075_c.936+1230inv mutation causing the absence of ACBD5 protein. The restoration 

of the biochemical phenotype of the patient’s cells after transfection with wild type ACBD5, and the 

accumulation of C26:0 in the ACBD5-depleted HeLa cells confirmed that the impaired VLCFA 

metabolism in the patient is caused solely by ACBD5 deficiency.  

ACBD5 is a peroxisomal membrane protein with a cytosolic acyl-CoA binding domain. Based on our 

findings in fibroblasts of the patient and the ACBD5-deficient HeLa cells we postulate that ACBD5 is 

involved in capturing C26-CoA in the cytosol through its acyl-CoA binding domain and presenting it to 

the VLCFA transporter ABCD1. ABCD1 then transports the C26-CoA into the peroxisome where it is 

beta-oxidized by the sequential action of the peroxisomal beta-oxidation enzymes ACOX1, D-

bifunctional protein (DBP), sterol-carrier protein X (SCPX) and 3-ketoacyl-CoA thiolase. This 

postulated role of ACBD5 is supported by the fact that peroxisomal beta-oxidation activity of C26:0 in 

the ACBD5 patient’s cells was reduced to a similar degree as observed in cells of X-ALD patients. In 

mitochondria, the acyl-CoA binding protein ACBP fulfills a similar function by binding palmitoyl-CoA 

and passing it on to carnitine palmitoyl-CoA transferase 1 (CPT1) for transport over the mitochondrial 

membrane to be beta-oxidized.[23] 

ACBD5 was recently suggested to play a role in pexophagy.[11] It was hypothesized that the absence 

of ACBD5 would abrogate pexophagy and lead over time to an accumulation of peroxisomes. 

However, our studies in the patient’s fibroblasts lacking ACBD5 and in HeLa∆ACBD5 cells did not 

confirm an involvement of ACBD5 in pexophagy, at least in these cell types. In addition, we did not 

observe an obvious difference in peroxisome number between control and ACBD5-deficient cells. 

Instead our findings clearly showed that ACBD5 deficiency caused an impaired VLCFA metabolism. 

VLCFA accumulation is not a biochemical abnormality exclusive to ACBD5 deficiency, but is also 

observed in other peroxisomal disorders, like X-ALD, ACOX1 and DBP deficiency and in Zellweger 

spectrum disorders (ZSDs).[3] In X-ALD, ACBD5 and ACOX1 deficiency, VLCFA accumulation is the 

only biochemical abnormality, whereas in DBP deficiency and ZSDs, multiple peroxisomal metabolic 

pathways are affected resulting in additional metabolic abnormalities. The patient presented with 

progressive leukodystrophy, ataxia, retinal dystrophy, cleft palate and facial dysmorphism, which are 

clinical symptoms that resemble those observed in patients with ACOX1 deficiency, but are different 

from X-ALD.[24] The underlying reason for this difference in clinical picture is unclear but could be due 

to a different tissue/cell type expression pattern of the proteins involved and a difference in the 

expression pattern of the proteins that can partly take over the function of the defective proteins (e.g. 

ABCD2 and ABCD3 in case of ABCD1 deficiency and ACOX2 in case of ACOX1 deficiency). Also the 

MRI abnormalities seen in this patient (Figure 1) are distinct from those seen in X-ALD or ZSDs.[25] 
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In a previous study aimed at determining the genetic causes of retinal dystrophy in a large cohort of 

patients by WES, a homozygous splice site mutation was identified in ACBD5 in three siblings with 

retinal dystrophy and white matter changes.[15] Although no further clinical details were provided, this 

suggests that the clinical presentation of ACBD5 deficiency is consistent. Since the focus of previous 

report was on exome sequencing, no metabolic investigations nor experiments to investigate the 

underlying pathological mechanism were presented. Our studies now show that ACBD5 deficiency 

belongs to the group of peroxisomal single enzyme deficiencies. This novel disorder should be 

included in addition to ACOX1 deficiency and X-ALD in the differential diagnostics in patients with 

clinical symptoms indicative of a peroxisomal disorder and an abnormal VLCFA profile. 
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FIGURE LEGENDS 

Figure 1. Brain MRI at the age of 4 years and 3 months (A). Please note the diffuse involvement of the 

deep white matter with abnormal T2 signal (B) and relatively more normal T1 signal (C) consistent with 

hypomyelination. The signal abnormalities demonstrate relative better myelination of the subcortical 

white matter (D, thin white arrow) and the anterior aspect of the corpus callosum (A and B). There is 

striking signal abnormality involving the posterior limb of the internal capsule, sparing the pyramidal 

tracts (dark dots in B). The splenium of the corpus callosum is also strikingly affected (A thick white 

arrow and B thin white arrow). There are signal abnormalities of the long tracts of the brainstem, 

including the pyramidal tracts (E thin white arrow) and the medial lemniscus (F thin white arrow) in the 

pons and the superior (E dotted white arrow) and inferior cerebellar (F dotted white arrow) peduncles. 

There are no structural abnormalities of the brain, contrast enhancement or diffusion restriction 

abnormalities. 

Figure 2. ACBD5 expression and localization in fibroblasts from the ACBD5-deficient patient and 

control subjects. (A) Immunoblot analysis of fibroblast lysates using antibodies against ACBD5 shows 

the absence of ACBD5 in the patient’s cells. (B) Immunofluorescence microscopy of patient’s and 

control fibroblasts using antibodies against catalase (left panels) and ACBD5 (right panels) confirms 

co-localization of catalase and ACBD5 in the control cells and the absence of ACBD5 in the patient’s 

cells.  

Figure 3. Pexophagy assay. (A) Cultured fibroblasts from the ACBD5-deficient patient and a control 

subject were transfected with mCherry-GFP-SKL and treated with lysosomal inhibitors (2 µM E-64, 

250 µM leupeptin) 24 hours after transfection. Five days after transfection 10-40 cells were imaged in 

two to three independent experiments. Data presented as mean ratio (+ SD) of pexophagy-induced vs 

non-induced cells (See materials and methods for more details). For representative images see online 

supplementary figure S3. (B) Control HeLa cells and two HeLa-∆ACBD5 cell lines were transfected 

with mCherry-GFP-SKL and treated with lysosomal inhibitors (2 µM E-64, 250 µM leupeptin) 24 hours 

after transfection. Two days after transfection >35 cells were imaged in two independent experiments. 

Data presented as mean ratio (+SD) of pexophagy-induced cells vs non-induced cells (See materials 

and methods for more details). For representative images see online supplementary figure S3. 

 

Supplementary figures 

Figure S1. Schematic presentation of the homozygous c.626-689_937-

234delins936+1075_c.936+1230inv mutation in the ACBD5 gene of the patient. The upper graph 

depicts the complete ACBD5 gene of the patient. The lower graph details the large intragenic deletion 

plus the original location of the small reverse complement intron 8 sequence insertion (striped part 

indicates reverse complement sequence). Arrows indicate the position of the sequencing primers used 

to determine the exact mutation. 

Figure S2. ACBD5 expression in control HeLa and HeLa-∆ACBD5 cells. Immunoblot analysis of cell 

lysates using antibodies against ACBD5 shows the absence of ACBD5 in the HeLa-∆ACBD5 cells. 

Figure S3. Representative images of fibroblasts and HeLa cells in the pexophagy assay. (A) mCherry-
GFP-SKL transfected fibroblasts of the patient and control individuals (± autophagy inhibitor 3-MA) 
imaged five days after transfection. (B) mCherry-GFP-SKL transfected HeLa-∆ACBD5 cells and 
control HeLa cells imaged two days after transfection. 
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Figure 1. Brain MRI at the age of 4 years and 3 months.  
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Figure 2. ACBD5 expression and localization in fibroblasts from the ACBD5-deficient patient and control 
subjects.  
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Figure 3. Pexophagy assay.  
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