118 research outputs found

    Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells

    Get PDF
    Infection of BHK cells by Sindbis virus (SV) gives rise to a profound inhibition of cellular protein synthesis, whereas translation of viral subgenomic mRNA that encodes viral structural proteins, continues for hours. To gain further knowledge on the mechanism by which this subgenomic mRNA is translated, the requirements for some initiation factors (eIFs) and for the presence of the initiator AUG were examined both in infected and in uninfected cells. To this end, BHK cells were transfected with different SV replicons or with in vitro made SV subgenomic mRNAs after inactivation of some eIFs. Specifically, eIF4G was cleaved by expression of the poliovirus 2A protease (2Apro) and the alpha subunit of eIF2 was inactivated by phosphorylation induced by arsenite treatment. Moreover, cellular location of these and other translation components was analyzed in BHK infected cells by confocal microscopy. Cleavage of eIF4G by poliovirus 2Apro does not hamper translation of subgenomic mRNA in SV infected cells, but bisection of this factor blocks subgenomic mRNA translation in uninfected cells or in cell-free systems. SV infection induces phosphorylation of eIF2α, a process that is increased by arsenite treatment. Under these conditions, translation of subgenomic mRNA occurs to almost the same extent as controls in the infected cells but is drastically inhibited in uninfected cells. Notably, the correct initiation site on the subgenomic mRNA is still partially recognized when the initiation codon AUG is modified to other codons only in infected cells. Finally, immunolocalization of different eIFs reveals that eIF2 α and eIF4G are excluded from the foci, where viral RNA replication occurs, while eIF3, eEF2 and ribosomes concentrate in these regions. These findings support the notion that canonical initiation takes place when the subgenomic mRNA is translated out of the infection context, while initiation can occur without some eIFs and even at non-AUG codons in infected cells

    Improved Measurement of Electron Antineutrino Disappearance at Daya Bay

    Get PDF
    postprin

    Prevalence and trend of hepatitis C virus infection among blood donors in Chinese mainland: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood transfusion is one of the most common transmission pathways of hepatitis C virus (HCV). This paper aims to provide a comprehensive and reliable tabulation of available data on the epidemiological characteristics and risk factors for HCV infection among blood donors in Chinese mainland, so as to help make prevention strategies and guide further research.</p> <p>Methods</p> <p>A systematic review was constructed based on the computerized literature database. Infection rates and 95% confidence intervals (95% CI) were calculated using the approximate normal distribution model. Odds ratios and 95% CI were calculated by fixed or random effects models. Data manipulation and statistical analyses were performed using STATA 10.0 and ArcGIS 9.3 was used for map construction.</p> <p>Results</p> <p>Two hundred and sixty-five studies met our inclusion criteria. The pooled prevalence of HCV infection among blood donors in Chinese mainland was 8.68% (95% CI: 8.01%-9.39%), and the epidemic was severer in North and Central China, especially in Henan and Hebei. While a significant lower rate was found in Yunnan. Notably, before 1998 the pooled prevalence of HCV infection was 12.87% (95%CI: 11.25%-14.56%) among blood donors, but decreased to 1.71% (95%CI: 1.43%-1.99%) after 1998. No significant difference was found in HCV infection rates between male and female blood donors, or among different blood type donors. The prevalence of HCV infection was found to increase with age. During 1994-1995, the prevalence rate reached the highest with a percentage of 15.78% (95%CI: 12.21%-19.75%), and showed a decreasing trend in the following years. A significant difference was found among groups with different blood donation types, Plasma donors had a relatively higher prevalence than whole blood donors of HCV infection (33.95% <it>vs </it>7.9%).</p> <p>Conclusions</p> <p>The prevalence of HCV infection has rapidly decreased since 1998 and kept a low level in recent years, but some provinces showed relatively higher prevalence than the general population. It is urgent to make efficient measures to prevent HCV secondary transmission and control chronic progress, and the key to reduce the HCV incidence among blood donors is to encourage true voluntary blood donors, strictly implement blood donation law, and avoid cross-infection.</p

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Potential for large-scale CO2 removal via enhanced rock weathering with croplands

    Get PDF
    Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change1. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification2,3,4. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius5. China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2 gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80–180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land–ocean transfer of weathered products

    Epoxidation of olefins catalyzed by [pi-C5H5NC16H33](3) [PW4O16] with molecular oxygen and a recyclable reductant 2-ethylanthrahydroquinone

    No full text
    In the epoxidation system of [pi -C5H5NC16H33](3)[PW4O16]/molecular oxygen/recyclable reductant (2-ethylanthrahydroquinone), cyclohexene, terminal olefins and allyl chloride all underwent epoxidation reactions smoothly under mild conditions. Good selectivities to epoxides and high reductant utilization efficiencies (72.6-94.5%) were achieved. From 1-dodecene to 1-hexene, the epoxidation reactivity of the olefin and the utilization efficiency of the reductant increased with the decrease of carbon atoms in terminal olefins. Studies showed that H2O2 produced by the oxidation of 2-ethylanthrahydroquinone with molecular oxygen was the key intermediate that afforded the direct epoxidation of the substrate. (C) 2001 Elsevier Science B.V. All rights reserved
    corecore