148 research outputs found

    The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drinking water contaminated with inorganic arsenic is associated with increased risk for different types of cancer. Paradoxically, arsenic trioxide can also be used to induce remission in patients with acute promyelocytic leukemia (APL) with a success rate of approximately 80%. A comprehensive study examining the mechanisms and potential signaling pathways contributing to the anti-tumor properties of arsenic trioxide has not been carried out.</p> <p>Methods</p> <p>Here we applied a systems biology approach to identify gene biomarkers that underlie tumor cell responses to arsenic-induced cytotoxicity. The baseline gene expression levels of 14,500 well characterized human genes were associated with the GI<sub>50</sub> data of the NCI-60 tumor cell line panel from the developmental therapeutics program (DTP) database. Selected biomarkers were tested <it>in vitro</it> for the ability to influence tumor susceptibility to arsenic trioxide.</p> <p>Results</p> <p>A significant association was found between the baseline expression levels of 209 human genes and the sensitivity of the tumor cell line panel upon exposure to arsenic trioxide. These genes were overlayed onto protein-protein network maps to identify transcriptional networks that modulate tumor cell responses to arsenic trioxide. The analysis revealed a significant enrichment for the oxidative stress response pathway mediated by nuclear factor erythroid 2-related factor 2 (NRF2) with high expression in arsenic resistant tumor cell lines. The role of the NRF2 pathway in protecting cells against arsenic-induced cell killing was validated in tumor cells using shRNA-mediated knock-down.</p> <p>Conclusions</p> <p>In this study, we show that the expression level of genes in the NRF2 pathway serve as potential gene biomarkers of tumor cell responses to arsenic trioxide. Importantly, we demonstrate that tumor cells that are deficient for NRF2 display increased sensitivity to arsenic trioxide. The results of our study will be useful in understanding the mechanism of arsenic-induced cytotoxicity in cells, as well as the increased applicability of arsenic trioxide as a chemotherapeutic agent in cancer treatment.</p

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    ADAM33, a New Candidate for Psoriasis Susceptibility

    Get PDF
    Psoriasis is a chronic skin disorder with multifactorial etiology. In a recent study, we reported results of a genome-wide scan on 46 French extended families presenting with plaque psoriasis. In addition to unambiguous linkage to the major susceptibility locus PSORS1 on Chromosome 6p21, we provided evidence for a susceptibility locus on Chromosome 20p13. To follow up this novel psoriasis susceptibility locus we used a family-based association test (FBAT) for an association scan over the 17 Mb candidate region. A total of 85 uncorrelated SNP markers located in 65 genes of the region were initially investigated in the same set of large families used for the genome wide search, which consisted of 295 nuclear families. When positive association was obtained for a SNP, candidate genes nearby were explored more in detail using a denser set of SNPs. Thus, the gene ADAM33 was found to be significantly associated with psoriasis in this family set (The best association was on a 3-SNP haplotype P = 0.00004, based on 1,000,000 permutations). This association was independent of PSORS1. ADAM33 has been previously associated with asthma, which demonstrates that immune system diseases may be controlled by common susceptibility genes with general effects on dermal inflammation and immunity. The identification of ADAM33 as a psoriasis susceptibility gene identified by positional cloning in an outbred population should provide insights into the pathogenesis and natural history of this common disease

    Berberine Attenuates Experimental Autoimmune Encephalomyelitis in C57 BL/6 Mice

    Get PDF
    Berberine, an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-inflammatory and neuroprotective effects. However, there are no reports about the effects and mechanisms of berberine in experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS).Female C57 BL/6 mice immunized with myelin oligodendrocyte glycoprotein 35–55 amino acid peptide were treated with berberine at the day of disease onset and medication was administered daily until mice were sacrificed. Blood–brain barrier (BBB) permeability and the alteration of matrix metalloproteinase-2 (MMP-2, 72 kDa) and matrix metalloproteinase-9 (MMP-9, 92 kDa) in the brain and cerebrospinal fluid (CSF) of EAE mice were detected by quantitative measurement for Evan's blue (EB) content, Western blot and gelatin zymography respectively. The results showed that berberine attenuated clinical and pathological parameters of EAE, reduced the permeability of BBB, inhibited the activity and expression of MMP-9 but not MMP-2 in the CSF and brain of EAE mice.These findings suggest that berberine is effective to attenuate the clinical severity of EAE in C57 BL/6 mice by reducing the permeability of BBB, decreasing the expression and activity of MMP-9, and decreasing the inflammatory infiltration. We think that berberine might be a potential therapeutic agent for MS

    Multiple Loci within the Major Histocompatibility Complex Confer Risk of Psoriasis

    Get PDF
    Psoriasis is a common inflammatory skin disease characterized by thickened scaly red plaques. Previously we have performed a genome-wide association study (GWAS) on psoriasis with 1,359 cases and 1,400 controls, which were genotyped for 447,249 SNPs. The most significant finding was for SNP rs12191877, which is in tight linkage disequilibrium with HLA-Cw*0602, the consensus risk allele for psoriasis. However, it is not known whether there are other psoriasis loci within the MHC in addition to HLA-C. In the present study, we searched for additional susceptibility loci within the human leukocyte antigen (HLA) region through in-depth analyses of the GWAS data; then, we followed up our findings in an independent Han Chinese 1,139 psoriasis cases and 1,132 controls. Using the phased CEPH dataset as a reference, we imputed the HLA-Cw*0602 in all samples with high accuracy. The association of the imputed HLA-Cw*0602 dosage with disease was much stronger than that of the most significantly associated SNP, rs12191877. Adjusting for HLA-Cw*0602, there were two remaining association signals: one demonstrated by rs2073048 (p = 2×10−6, OR = 0.66), located within c6orf10, a potential downstream effecter of TNF-alpha, and one indicated by rs13437088 (p = 9×10−6, OR = 1.3), located 30 kb centromeric of HLA-B and 16 kb telomeric of MICA. When HLA-Cw*0602, rs2073048, and rs13437088 were all included in a logistic regression model, each of them was significantly associated with disease (p = 3×10−47, 6×10−8, and 3×10−7, respectively). Both putative loci were also significantly associated in the Han Chinese samples after controlling for the imputed HLA-Cw*0602. A detailed analysis of HLA-B in both populations demonstrated that HLA-B*57 was associated with an increased risk of psoriasis and HLA-B*40 a decreased risk, independently of HLA-Cw*0602 and the C6orf10 locus, suggesting the potential pathogenic involvement of HLA-B. These results demonstrate that there are at least two additional loci within the MHC conferring risk of psoriasis

    Psoriasis Regression Analysis of MHC Loci Identifies Shared Genetic Variants with Vitiligo

    Get PDF
    Psoriasis is a common inflammatory skin disease with genetic components of both immune system and the epidermis. PSOR1 locus (6q21) has been strongly associated with psoriasis; however, it is difficult to identify additional independent association due to strong linkage disequilibrium in the MHC region. We performed stepwise regression analyses of more than 3,000 SNPs in the MHC region genotyped using Human 610-Quad (Illumina) in 1,139 cases with psoriasis and 1,132 controls of Han Chinese population to search for additional independent association. With four regression models obtained, two SNPs rs9468925 in HLA-C/HLA-B and rs2858881 in HLA-DQA2 were repeatedly selected in all models, suggesting that multiple loci outside PSOR1 locus were associated with psoriasis. More importantly we find that rs9468925 in HLA-C/HLA-B is associated with both psoriasis and vitiligo, providing first important evidence that two major skin diseases share a common genetic locus in the MHC, and a basis for elucidating the molecular mechanism of skin disorders

    Lipopolysaccharide Renders Transgenic Mice Expressing Human Serum Amyloid P Component Sensitive to Shiga Toxin 2

    Get PDF
    Transgenic C57BL/6 mice expressing human serum amyloid P component (HuSAP) are resistant to Shiga toxin 2 (Stx2) at dosages that are lethal in HuSAP-negative wild-type mice. However, it is well established that Stx2 initiates extra-intestinal complications such as the haemolytic-uremic syndrome despite the presence of HuSAP in human sera. We now demonstrate that co-administering purified Escherichia coli O55 lipopolysaccharide (LPS), at a dosage of 300 ng/g body weight, to HuSAP-transgenic mice increases their susceptibility to the lethal effects of Stx2. The enhanced susceptibility to Stx2 correlated with an increased expression of genes encoding the pro-inflammatory cytokine TNFα and chemokines of the CXC and CC families in the kidneys of LPS-treated mice, 48 hours after the Stx2/LPS challenge. Co-administering the glucocorticoid dexamethasone, but not the LPS neutralizing cationic peptide LL-37, protected LPS-sensitized HuSAP-transgenic mice from lethal doses of Stx2. Dexamethasone protection was specifically associated with decreased expression of the same inflammatory mediators (CXC and CC-type chemokines and TNFα) linked to enhanced susceptibility caused by LPS. The studies reveal further details about the complex cascade of host-related events that are initiated by Stx2 as well as establish a new animal model system in which to investigate strategies for diminishing serious Stx2-mediated complications in humans infected with enterohemorrhagic E. coli strains

    Improved photovoltaic performance of monocrystalline silicon solar cell through luminescent down-converting Gd2O2S:Tb3+ phosphor

    Get PDF
    This work reports on efforts to enhance the photovoltaic performance of standard p‐type monocrystalline silicon solar cell (mono‐Si) through the application of ultraviolet spectral down‐converting phosphors. Terbium‐doped gadolinium oxysulfide phosphor and undoped‐gadolinium oxysulfide precursor powders were prepared by a controlled hydrothermal decomposition of a urea homogeneous precipitation method. The resulting rare‐earth element hydroxycarbonate precursor powders were then converted to the oxysulfide by annealing at 900°C in a sulfur atmosphere. The as‐prepared phosphors were encapsulated in ethylene vinyl acetate co‐polymer resin and applied on the textured surface of solar cell using rotary screen printing. Comparative results from X‐ray powder diffraction, field emission scanning electron microscopy, scanning transmission electron microscopy, and photoluminescence spectroscopy studies on the microstructure and luminescent properties of the materials are reported. We also compared the optical reflectance and external quantum efficiency response of the cells with and without a luminescent phosphor layer. The results obtained on the terbium‐doped gadolinium oxysulfide phosphor show clearly that the down‐conversion effect induced by the terbium dopant play a crucial role in enhancing the photovoltaic cells' performance. Under an empirical one‐sun illumination, the modified cells showed an optimum enhancement of 3.6% (from 16.43% to 17.02%) in conversion efficiency relative to bare cells. In the concentration range of 1 to 2.5 mg/mL, EVA/Gd2O2S (blank) composites also improve electrical efficiency, but not as much as EVA/Gd2O2S:Tb3+ composites

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore