28 research outputs found

    Neutron Electric Dipole Moment Constraint on Scale of Minimal Left-Right Symmetric Model

    Full text link
    Using an effective theory approach, we calculate the neutron electric dipole moment (nEDM) in the minimal left-right symmetric model with both explicit and spontaneous CP violations. We integrate out heavy particles to obtain flavor-neutral CP-violating effective Lagrangian. We run the Wilson coefficients from the electroweak scale to the hadronic scale using one-loop renormalization group equations. Using the state-of-the-art hadronic matrix elements, we obtain the nEDM as a function of right-handed W-boson mass and CP-violating parameters. We use the current limit on nEDM combined with the kaon-decay parameter ϵ\epsilon to provide the most stringent constraint yet on the left-right symmetric scale MWR>(10±3) M_{W_R} > (10 \pm 3) TeV.Comment: 20 pages and 8 figure

    Top quark anomalous tensor couplings in the two-Higgs-doublet models

    Get PDF
    We compute the one loop right and left anomalous tensor couplings (g(R) and g(L), respectively) for the top quark, in the aligned two-Higgs-doublet model. They are the magnetic-like couplings in the most general parameterization of the tbW vertex. We find that the aligned two-Higgs doublet model, that includes as particular cases some of the most studied extensions of the Higgs sector, introduces new electroweak contribution's and provides theoretical predictions that are very sensitive to both new scalar masses and the neutral scalar mixing angle. For a largo area in the parameters space we obtain significant deviations in both the real and the imaginary parts of the couplings gR and gL, compared to the predictions given by the electroweak sector of the Standard Model. The most important ones are those involving the imaginary part of the left coupling g(L) and the real part of the right coupling gR. The real part of g(L), and the imaginary part of gR also show an important sensitivity to new physics scenarios. The model can also account for new CP violation effects via the introduction of complex alignment parameters that have important consequences on the values for the imaginary parts of the couplings. The top anomalous tensor couplings will be measured at the LHC and at future colliders providing a complementary insight on new physics, independent from the bounds in top decays coming from B physics and b -> s gamma

    Methionine Sulfoxide Reductase A (MsrA) Deficient Mycoplasma genitalium Shows Decreased Interactions with Host Cells

    Get PDF
    Mycoplasma genitalium is an important sexually transmitted pathogen that affects both men and women. In genital-mucosal tissues, it initiates colonization of epithelial cells by attaching itself to host cells via several identified bacterial ligands and host cell surface receptors. We have previously shown that a mutant form of M. genitalium lacking methionine sulfoxide reductase A (MsrA), an antioxidant enzyme which converts oxidized methionine (Met(O)) into methionine (Met), shows decreased viability in infected animals. To gain more insights into the mechanisms by which MsrA controls M. genitalium virulence, we compared the wild-type M. genitalium strain (G37) with an msrA mutant (MS5) strain for their ability to interact with target cervical epithelial cell lines (HeLa and C33A) and THP-1 monocytic cells. Infection of epithelial cell lines with both strains revealed that MS5 was less cytotoxic to HeLa and C33A cell lines than the G37 strain. Also, the MS5 strain was more susceptible to phagocytosis by THP-1 cells than wild type strain (G37). Further, MS5 was less able to induce aggregation and differentiation in THP-1 cells than the wild type strain, as determined by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling of the cells, followed by counting of cells attached to the culture dish using image analysis. Finally, MS5 was observed to induce less proinflammatory cytokine TNF-α by THP-1 cells than wild type G37 strain. These results indicate that MsrA affects the virulence properties of M. genitalium by modulating its interaction with host cells

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Occupancy of brain dopamine d(3) receptors and drug craving: a translational approach

    No full text
    Selective dopamine D(3) receptor (D(3)R) antagonists prevent reinstatement of drug-seeking behavior and decrease the rewarding effects of contextual cues associated with drug intake preclinically, suggesting that they may reduce drug craving in humans. GSK598809 is a selective D(3)R antagonist recently progressed in Phase I trials. The aim of this study was to establish a model, based on the determination of the occupancy of brain D(3)Rs (O(D(3))(R)) across species, to predict the ability of GSK598809 to reduce nicotine-seeking behavior in humans, here assessed as cigarette craving in smokers. Using ex vivo [(125)I](R)-trans-7-hydroxy-2-[N-propyl-N-(3′-iodo-2′-propenyl)amino] tetralin ([(125)I]7OH-PIPAT) autoradiography and [(11)C]PHNO positron emission tomography, we demonstrated a dose-dependent occupancy of the D(3)Rs by GSK598809 in rat, baboon, and human brains. We also showed a direct relationship between O(D(3))(R) and pharmacokinetic exposure, and potencies in line with the in vitro binding affinity. Likewise, GSK598809 dose dependently reduced the expression of nicotine-induced conditioned place preference (CPP) in rats, with an effect proportional to the exposure and O(D(3))(R) at every time point, and 100% effect at O(D(3))(R) values ⩾72%. In humans, a single dose of GSK598809, giving submaximal levels (72–89%) of O(D(3))(R), transiently alleviated craving in smokers after overnight abstinence. These data suggest that either higher O(D(3))(R) is required for a full effect in humans or that nicotine-seeking behavior in CPP rats only partially translates into craving for cigarettes in short-term abstinent smokers. In addition, they provide the first clinical evidence of potential efficacy of a selective D(3)R antagonist for the treatment of substance-use disorders
    corecore