Abstract

Using an effective theory approach, we calculate the neutron electric dipole moment (nEDM) in the minimal left-right symmetric model with both explicit and spontaneous CP violations. We integrate out heavy particles to obtain flavor-neutral CP-violating effective Lagrangian. We run the Wilson coefficients from the electroweak scale to the hadronic scale using one-loop renormalization group equations. Using the state-of-the-art hadronic matrix elements, we obtain the nEDM as a function of right-handed W-boson mass and CP-violating parameters. We use the current limit on nEDM combined with the kaon-decay parameter ϵ\epsilon to provide the most stringent constraint yet on the left-right symmetric scale MWR>(10±3) M_{W_R} > (10 \pm 3) TeV.Comment: 20 pages and 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019