64 research outputs found

    Individual variability of high-sensitivity cardiac troponin levels after aerobic exercise is not mediated by exercise mode

    Get PDF
    We compared the response of high-sensitivity cardiac troponin T (hs-cTnT) after 60 min of swimming, running and cycling in well-trained triathletes. The maximal increase in hs-cTnT was similar in all exercise bouts (swimming 453%, cycling 349% and running 471%) although there was substantial individual variability in peak hs-cTnT. The post-exercise kinetics for hs-cTnT was consistent. The change in hs-cTnT was correlated between trials. In all trials, hs-cTnT had largely returned to baseline levels 24 h post-exercise. In summary, an increase in hs-cTnT was apparent in all triathletes independent of exercise mode and despite variable peak data the consistent kinetics over 24 h post-exercise would suggest this represents a physiological phenomenon

    Impact of an endurance training program on exercise-induced cardiac biomarker release

    Get PDF
    We evaluated the influence of a 14-wk endurance running program on the exercise-induced release of high-sensitivity cardiac troponin T (hs-cTnT) and NH2-terminal pro-brain natriuretic peptide (NT-proBNP). Fifty-eight untrained participants were randomized to supervised endurance exercise (14 wk, 3–4 days/wk, 120–240 min/wk, 65–85% of maximum heart rate) or a control group. At baseline and after the training program, hs-cTnT and NT-proBNP were assessed before and 5 min, 1 h, 3 h, 6 h, 12 h, and 24 h after a 60-min maximal running test. Before training, hs-cTnT was significantly elevated in both groups with acute exercise (P < 0.0001) with no between-group differences. There was considerable heterogeneity in peak hs-cTnT concentration with the upper reference limit exceeded in 71% of the exercise tests. After training, both baseline and postexercise hs-cTnT were significantly higher compared with pretraining and the response of the control group (P = 0.008). Acute exercise led to a small but significant increase in NT-proBNP, but this was not mediated by training (P = 0.121). In summary, a controlled endurance training intervention resulted in higher pre- and postexercise values of hs-cTnT with no changes in NT-proBNP

    Anti-nausea effects and pharmacokinetics of ondansetron, maropitant and metoclopramide in a low-dose cisplatin model of nausea and vomiting in the dog: a blinded crossover study

    Get PDF
    Nausea is a subjective sensation which is difficult to measure in non-verbal species. The aims of this study were to determine the efficacy of three classes of antiemetic drugs in a novel low dose cisplatin model of nausea and vomiting and measure change in potential nausea biomarkers arginine vasopressin (AVP) and cortisol. A four period cross-over blinded study was conducted in eight healthy beagle dogs of both genders. Dogs were administered 18 mg/m2 cisplatin intravenously, followed 45 min later by a 15 min infusion of either placebo (saline) or antiemetic treatment with ondansetron (0.5 mg/kg; 5-HT3 antagonist), maropitant (1 mg/kg; NK1 antagonist) or metoclopramide (0.5 mg/kg; D2 antagonist). The number of vomits and nausea associated behaviours, scored on a visual analogue scale, were recorded every 15 min for 8 h following cisplatin administration. Plasma samples were collected to measure AVP, cortisol and antiemetic drug concentrations

    Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum

    Get PDF
    The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically-modified animal models, together with biochemical and pharmacological approaches, we provide a high resolution expression map and a detailed functional characterization of A2AR-CB1R heteromers in the dorsal striatum. Specifically, our data unveil that the A2AR-CB1R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington’s disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases

    Anti-cancer drug validation: the contribution of tissue engineered models

    Get PDF
    Abstract Drug toxicity frequently goes concealed until clinical trials stage, which is the most challenging, dangerous and expensive stage of drug development. Both the cultures of cancer cells in traditional 2D assays and animal studies have limitations that cannot ever be unraveled by improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. Considering the NCI60, a panel of 60 cancer cell lines representative of 9 different cancer types: leukemia, lung, colorectal, central nervous system (CNS), melanoma, ovarian, renal, prostate and breast, we propose to review current Bstate of art^ on the 9 cancer types specifically addressing the 3D tissue models that have been developed and used in drug discovery processes as an alternative to complement their studyThis article is a result of the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This article was also supported by the EU Framework Programme for Research and Innovation HORIZON 2020 (H2020) under grant agreement n° 668983 — FoReCaST. FCT distinction attributed to Joaquim M. Oliveira (IF/00423/2012) and Vitor M. Correlo (IF/01214/2014) under the Investigator FCT program is also greatly acknowledged.info:eu-repo/semantics/publishedVersio

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Developing an Online Authoring Tool to Support Teachers in Designing 21st Century Design Based Education in Primary School

    Full text link
    © 2019, Springer Nature Switzerland AG. Design Based learning (DBL) as an educational approach which is emerging in primary education. Because of the limited availability of prescribed teaching materials for DR, learning activities are often developed by instructors themselves. However, it is often difficult for teachers to develop DBL activities. The paper investigates how primary school teachers can be supported in developing successful DR learning activities, in which pupils can develop both core curriculum objectives and 21st century skills. The research questions are: How can teachers be supported in the design of DBL activities aimed at concrete learning objectives? Are teachers able to apply the DBL creation tool as intended; to follow the design strategy offered, to reflect on the DBL activities using the tool and to improve the design iteratively? Are teachers able to successfully develop DBL learning activities using the tool? The paper describes the development of a tool that supports primary school teachers in creating DBL teaching materials. A web-based tool has been realized iteratively by means of design research. The resulting supports the teachers in developing 21st century education and encourages the teacher to reflect, even if it does not yet produce complete teaching materials for the classroom. However, in order to be effective in promoting DBL, there is a need to integrate the underlying concepts of DBL (such as incorporating design generations into the course material) even more extensively into the tool and to supplement it with an explicit pedagogical strategy and concrete assessment procedures
    corecore