3 research outputs found

    ЕФЕКТИВНІСТЬ ПЛАСТИНЧАТИХ ТЕПЛОУТИЛІЗАТОРІВ ТЕПЛОУТИЛІЗАЦІЙНИХ СИСТЕМ

    Get PDF
    The development and application of modern integrated methods for studying the efficiency of heat recovery systems and their individual elements enables ensuring their maximum efficiency. These methods are based on a combination of methods of exergic analysis with statistical methods of experiment planning, methods of the theory of linear systems, thermodynamics of irreversible processes, etc. A method is developed for calculating the losses of exergic power in heat conduction processes for a gas-air plate heat exchanger. Losses of exergic power occur when heat is transferred through the cross-section of the heat recovery plate. The methodology is based on a complex approach combining exergy methods with methods of thermodynamics of irreversible processes. The mathematical model of the investigated processes includes the exergy equation, the balance equation of exergy and entropy, the equation of continuity, the equation of phase motion, the energy equation, the balance equation for enthalpies, the Gibbs equation and the heat equation for boundary conditions of the third kind for an unbounded plate. A plate of a gas-air plate heat exchanger was modelled as an unlimited plate thickness. When obtaining formulas for calculating the losses of exergic power, the local differential equation of the exergy balance obtained earlier was used. In this equation, one of the terms determines the losses of exergy power, which are caused by the irreversibility of the processes. Such losses are related to thermal conductivity, phase viscosity, phase-to-phase heat transfer and friction between phases. On the basis of this equation and the solution of the heat equation under boundary conditions of the third kind, formulas are obtained for calculating the losses of exergy power. Calculations of total losses of exergic power in a gas-air plate heat exchanger and losses of exergic power in heat conduction processes under various operating conditions of the boiler are performed. It is established that losses of exergic power in heat conduction processes in a gas-air plate heat exchanger make up 8.6-11.6 % of the total losses of exergy power and depend on the operating mode of the boiler. Changing in the necessary direction the thermophysical characteristics of the gas-air plate heat exchanger, it is possible to reduce the loss of exergy power.Розроблено методику розрахунку втрат ексергетичної потужності у процесах теплопровідності під час передачі теплоти через поперечний переріз пластини газоповітряного пластинчастого теплоутилізатора за граничних умов третього роду. Методику засновано на комплексному підході, що поєднує ексергетичні методи з методами термодинаміки незворотних процесів. Математична модель досліджуваних процесів включає рівняння ексергії, рівняння балансу ексергії та ентропії, рівняння нерозривності трифазної термодинамічної системи при зміні концентрації однієї з фаз, рівняння руху фаз, рівняння енергій, рівняння балансу ентальпій, рівняння Гіббса і рівняння теплопровідності за граничних умов третього роду. Для отримання формул для розрахунку втрат ексергетичної потужності використано локальне диференціальне рівняння балансу ексергії. У цьому рівнянні одна зі складових визначає втрати ексергетичної потужності, зумовлені незворотністю процесів і пов'язані з теплопровідністю, в'язкістю фаз, міжфазним теплообміном і тертям між фазами. На підставі цього рівняння і рішення рівняння теплопровідності за граничних умов третього роду для необмеженої пластини, якою моделювалася пластина газоповітряного пластинчастого теплоутилізатора, отримано формули для розрахунку втрат ексергетичної потужності. Виконано розрахунки загальних втрат ексергетичної потужності в газоповітряному пластинчастому теплоутилізаторі за різних режимів роботи котла і втрат ексергетичної потужності у процесах теплопровідності. Встановлено, що втрати ексергетичної потужності у процесах теплопровідності в газоповітряному пластинчатому теплоутилізаторі становлять 8,6-11,6 % від загальних втрат ексергетичної потужності і залежать від режиму роботи котла

    Ексергетичні втрати в повітронагрівачі теплоутилізаційної системи котельної установки

    No full text
    The creation of effective heat-recover technologies should be based on the application of modern complex approaches to the analysis of efficiency and optimization of heat-recovery equipment. One of the reasons for the decrease in the efficiency of heat-recovery equipment is the loss of exergy power. Such losses are associated with hydrodynamic resistance during the movement of heat-transfer agents, with irreversible processes during heat transfer between the heat-transfer agents, with processes of heat-conductivity. A complex approach based on exergy methods and thermodynamic methods of irreversible processes allows separating the exergy power losses for reasons and areas of their localization and to identify the conditions under which these losses will be minimal. To determine the loss of exergic power in heat-recovery systems and their individual elements, in particular, in lamellar air heaters, a complex technique has been developed combining exergy methods with methods based on the calculation of exergy dissipators. The methodology is based on a mathematical model of the processes under study, which includes the equations of exergy, equations of entropy and exergy balances, equations of continuity, and equations for internal energy. Using the developed mathematical model, differential equations of entropy and exergy and formulas for calculating exergy dissipators, which characterize hydrodynamic losses and exergy power losses due to non-equilibrium heat transfer between heat carriers, are obtained. Investigations of exergy power losses in a lamellar air heater of a heat-recover system were performed. Using the formulas obtained for the investigated air heater, the specified exergy dissipators and total losses were calculated, and the relative contribution of each exergy dissipators to the total losses was determined. The greatest exergy power losses in the air heater of the heat-recovery system and, accordingly, the largest contribution to the total losses are associated with heat transfer from the wall to the air. The smallest losses and contribution are associated with hydrodynamic losses during air movement. Using balance methods of exergy analysis, the total losses of exergy power in the air heater were calculated and compared with their total losses. The analysis also allowed identifying losses attributable to the system of connecting pipelines, which ranges from 4 % to 10 %. The area of ​​maximum exergy power losses in the air heater is established – these are losses associated with heat transfer from the wall to the air.Однією з причин зниження ефективності теплоутилізаційних систем та їх окремих елементів є втрати ексергетичної потужності. Такі втрати пов'язані з гідродинамічним опором при русі теплоносіїв, з незворотними процесами при теплообміні між теплоносіями, з процесами теплопровідності. Зниження втрат ексергетичної потужності дає змогу підвищити ефективність теплоутилізаційних систем. Це визначає актуальність робіт, присвячених вирішенню зазначеної проблеми. Для розрахунку втрат ексергетичної потужності в теплоутилізаційних системах та їх окремих елементах розроблено комплексну методику, яка поєднує ексергетичні методи з методами, побудованими на розрахунку дисипаторів ексергії. Розроблена методика дає змогу розділити втрати ексергетичної потужності згідно з причинами та зонами їх локалізації і виявити умови, за яких ці втрати будуть мінімальними. Основні етапи методики включають розробку математичної моделі досліджуваних процесів на основі рівняння ексергії, рівнянь балансів ентропії і ексергії, рівняння нерозривності, рівняння для внутрішньої енергії. У межах розробленої математичної моделі отримано диференціальні рівняння ентропії та ексергії і формули для розрахунку дисипаторів ексергії, що характеризують гідродинамічні втрати і втрати ексергетичної потужності внаслідок нерівноважного теплообміну між теплоносіями. Визначено значення дисипаторів ексергії для пластинчастого повітронагрівача теплоутилізаційної системи котельної установки за різних режимів роботи котла. Встановлено внесок кожного виду втрат у сумарні втрати ексергетичної потужності у повітронагрівачі і визначено область максимальних втрат цієї потужності

    Enzymatic conversions of starch

    No full text
    corecore