2,908 research outputs found

    Dynamical Casimir-Polder energy between an excited and a ground-state atom

    Full text link
    We consider the Casimir-Polder interaction between two atoms, one in the ground state and the other in its excited state. The interaction is time-dependent for this system, because of the dynamical self-dressing and the spontaneous decay of the excited atom. We calculate the dynamical Casimir-Polder potential between the two atoms using an effective Hamiltonian approach. The results obtained and their physical meaning are discussed and compared with previous results based on a time-independent approach which uses a non-normalizable dressed state for the excited atom.Comment: 11 page

    Quantum entanglement of identical particles by standard information-theoretic notions

    Get PDF
    Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. We introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates.Comment: 6+3 pages, 3 Figures. Stories on: Physics World (http://physicsworld.com/cws/article/news/2016/feb/12/theorists-disentangle-particle-identity); Phys.org (http://phys.org/news/2016-02-entanglement-identical-particles-doesnt-textbook.html). Invited article on 2Physics.com, presenting key developments in physics (http://www.2physics.com/2016/03/a-new-approach-to-quantum-entanglement.html

    Comparison of non-Markovianity criteria in a qubit system under random external fields

    Full text link
    We give the map representing the evolution of a qubit under the action of non-dissipative random external fields. From this map we construct the corresponding master equation that in turn allows us to phenomenologically introduce population damping of the qubit system. We then compare, in this system, the time-regions when non-Markovianity is present on the basis of different criteria both for the non-dissipative and dissipative case. We show that the adopted criteria agree both in the non-dissipative case and in the presence of population damping.Comment: 8 pages, 1 figure. Some changes made. In press on Physica Scripta T (special issue

    Non locality and causal evolution in QFT

    Full text link
    Non locality appearing in QFT during the free evolution of localized field states and in the Feynman propagator function is analyzed. It is shown to be connected to the initial non local properties present at the level of quantum states and then it does not imply a violation of Einstein's causality. Then it is investigated a simple QFT system with interaction, consisting of a classical source coupled linearly to a quantum scalar field, that is exactly solved. The expression for the time evolution of the state describing the system is given. The expectation value of any arbitrary ``good'' local observable, expressed as a function of the field operator and its space and time derivatives, is obtained explicitly at all order in the field-matter coupling constant. These expectation values have a source dependent part that is shown to be always causally retarded, while the non local contributions are source independent and related to the non local properties of zero point vacuum fluctuations.Comment: Submitted to Journal of Physics B: 16 pages: 1 figur

    To NACK or not to NACK? Negative Acknowledgments in Information-Centric Networking

    Full text link
    Information-Centric Networking (ICN) is an internetworking paradigm that offers an alternative to the current IP\nobreakdash-based Internet architecture. ICN's most distinguishing feature is its emphasis on information (content) instead of communication endpoints. One important open issue in ICN is whether negative acknowledgments (NACKs) at the network layer are useful for notifying downstream nodes about forwarding failures, or requests for incorrect or non-existent information. In benign settings, NACKs are beneficial for ICN architectures, such as CCNx and NDN, since they flush state in routers and notify consumers. In terms of security, NACKs seem useful as they can help mitigating so-called Interest Flooding attacks. However, as we show in this paper, network-layer NACKs also have some unpleasant security implications. We consider several types of NACKs and discuss their security design requirements and implications. We also demonstrate that providing secure NACKs triggers the threat of producer-bound flooding attacks. Although we discuss some potential countermeasures to these attacks, the main conclusion of this paper is that network-layer NACKs are best avoided, at least for security reasons.Comment: 10 pages, 7 figure

    Poseidon: Mitigating Interest Flooding DDoS Attacks in Named Data Networking

    Full text link
    Content-Centric Networking (CCN) is an emerging networking paradigm being considered as a possible replacement for the current IP-based host-centric Internet infrastructure. In CCN, named content becomes a first-class entity. CCN focuses on content distribution, which dominates current Internet traffic and is arguably not well served by IP. Named-Data Networking (NDN) is an example of CCN. NDN is also an active research project under the NSF Future Internet Architectures (FIA) program. FIA emphasizes security and privacy from the outset and by design. To be a viable Internet architecture, NDN must be resilient against current and emerging threats. This paper focuses on distributed denial-of-service (DDoS) attacks; in particular we address interest flooding, an attack that exploits key architectural features of NDN. We show that an adversary with limited resources can implement such attack, having a significant impact on network performance. We then introduce Poseidon: a framework for detecting and mitigating interest flooding attacks. Finally, we report on results of extensive simulations assessing proposed countermeasure.Comment: The IEEE Conference on Local Computer Networks (LCN 2013

    Quantum Gates Between Distant Qubits via Spin-Independent Scattering

    Full text link
    We show how the spin independent scattering of two initially distant qubits, say, in distinct traps or in remote sites of a lattice, can be used to implement an entangling quantum gate between them. The scattering takes place under 1D confinement for which we consider two different scenarios: a 1D wave-guide and a tight-binding lattice. We consider models with contact-like interaction between two fermionic or two bosonic particles. A qubit is encoded in two distinct spins (or other internal) states of each particle. Our scheme enables the implementation of a gate between two qubits which are initially too far to interact directly, and provides an alternative to photonic mediators for the scaling of quantum computers. Fundamentally, an interesting feature is that "identical particles" (e.g., two atoms of the same species) and the 1D confinement, are both necessary for the action of the gate. Finally, we discuss the feasibility of our scheme, the degree of control required to initialize the wave-packets momenta, and show how the quality of the gate is affected by momentum distributions and initial distance. In a lattice, the control of quasi-momenta is naturally provided by few local edge impurities in the lattice potential.Comment: 10 pages, 7 figures. This article supersedes arXiv:1106.2329. Accepted in Quantu
    • …
    corecore