125 research outputs found

    Cirrhotic livers reveal genetic changes in the MDM2-P14ARF system of cell cycle regulators

    Get PDF
    The genesis of hepatocellular carcinoma is promoted by changes in the regulatory MDM2-P14ARF system. The incidence of such changes has to date not been analysed in non-tumourous livers showing regenerative proliferation. In the present study, 24 cirrhotic livers of alcohol-, autoimmue disorder- or HCV-caused genesis were screened for MDM2-P14ARF alterations at the level of protein, DNA and mRNA. Using confocal laser scanning microscopy, the absence of MDM2 and P14ARF expression was detected in all samples except three HCV-infected livers (four livers) which contained hepatocytes overexpressing MDM2 (P14ARF) protein. In two of the samples lacking P14ARF expression, laser microdissection and PCR demonstrated deletion of the P14ARF gene. The P14ARF gene amplified from other specimens did not carry mutations. MDM2 splicing variants were present in tissues from alcohol- and autoimmune disorder-induced cirrhoses. Sequencing of full-size mRNA revealed a MDM2 mis-sense mutation in an alcohol-induced cirrhosis. One sample contained regenerative nodules with genetic instability occurring at MDM2 locus D12S83 according to the data of automatic PCR fragment analysis. In summary, this study gives first evidence for different types of MDM2 and P14ARF alterations in cirrhotic livers. We suggest that the changes impair the regulatory MDM2-P14ARF system, thus possibly favouring regenerative proliferation and transformation

    First Evaluation of [11C]R116301 as an In Vivo Tracer of NK1 Receptors in Man

    Get PDF
    PURPOSE: NK1 receptors have been implicated in various neuropsychiatric and other disorders. R116301 is a selective NK1 receptor antagonist. In this pilot study, [(11)C]R116301 was evaluated as a potential positron emission tomography (PET) ligand for the NK1 receptor. PROCEDURES: Two dynamic PET studies were performed in three normal volunteers before and after a blocking dose of aprepitant. Data were analyzed using striatum to cerebellum standardized uptake value (SUV) ratios. RESULTS: Baseline SUV ratios at 60-90 min after injection ranged from 1.22 to 1.70. Following aprepitant administration, this specific signal was completely blocked. Aprepitant administration did not significantly affect uptake in cerebellum, confirming the absence of NK1 receptors in cerebellum. CONCLUSION: These preliminary results indicate that [(11)C]R116301 has potential as a radioligand for in vivo assessment of NK1 receptors in the human brai

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    An Author Correction to this article was published on 17 January 2019.Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10 −15 ), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification. © 2018, The Author(s).Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10 −15 ), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification. © 2018, The Author(s).Peer reviewe

    Height, selected genetic markers and prostate cancer risk:Results from the PRACTICAL consortium

    Get PDF
    Background: Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer. Methods: We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions. Results: The results suggest that height is associated with high-grade prostate cancer risk. Men with height 4180cm are at a 22% increased risk as compared to men with height o173cm (OR 1.22, 95% CI 1.01–1.48). Genetic variants in the growth pathway gene showed an association with prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer and high-grade prostate cancer by 13% and 15%, respectively, in the highest score group as compared to lowest score group. Conclusions: There was no evidence of gene-environment interaction between height and the selected candidate SNPs. Our findings suggest a role of height in high-grade prostate cancer. The effect of genetic variants in the genes related to growth is seen in all cases and high-grade prostate cancer. There is no interaction between these two exposures.</p

    Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets

    Get PDF
    Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation

    Get PDF
    Although genome-wide association studies have identified over 100 risk loci that explain ~33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa
    corecore