99 research outputs found

    Maxillofacial injuries associated with intimate partner violence in women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The facial region has been the most common site of injury following violent episodes. The purpose of this study was to determine the prevalence and pattern of maxillofacial injuries associated with intimate partner violence (IPV) in women treated at a single facility in Malaysia.</p> <p>Methods</p> <p>A retrospective review of 242 hospital records of female IPV victims who were seen at the One-Stop Crisis Centre (OSCC) in Hospital Raja Perempuan Zainab II, Kelantan over a two-year period (January 1, 2005 to December 31, 2006) was performed. A structured form was used for data collection. Information regarding the anatomical sites of injuries, types of injuries, and mechanisms of assault were obtained.</p> <p>Results</p> <p>Most victims were married (85.1%), were injured by the husband (83.5%), and had at least one previous IPV episode (85.5%). Injury to the maxillofacial region was the most common (50.4%), followed by injury to the limbs (47.9%). In 122 cases of maxillofacial injuries, the middle of the face was most frequently affected (60.6%), either alone or in combination with the upper or lower third of the face. Injury to soft tissues (contusions, abrasions and lacerations) was the most common (87.7%).</p> <p>Conclusions</p> <p>This study indicates there is a high prevalence of maxillofacial injuries associated with IPV among women treated at the OSCC in Kelantan, Malaysia.</p

    Pharmacological Inhibition of Caspase and Calpain Proteases: A Novel Strategy to Enhance the Homing Responses of Cord Blood HSPCs during Expansion

    Get PDF
    Background: Expansion of hematopoietic stem/progenitor cells (HSPCs) is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB) derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. Methodology/Principal Findings: CB derived CD34 + cells were expanded using a combination of growth factors with and without Caspase inhibitor-zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homingrelated molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors) caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice

    Making sense of the evolving nature of depression narratives and their inherent conflicts

    Get PDF
    Originally a psychiatric diagnosis fashioned by Western psychiatry in the 20th Century, depression evolved to encompass varying lineages of discourse and care. This article elucidates some of the current challenges – as well as emerging discourses – influencing the category of depression. Depression-like experiences are shaped by (at times conflicting) subjectivities, claims to knowledge, material realities, social contexts and access to resources. With no unified understanding of the category of ‘depression’ available, lay people, social and neuro scientists, GPs, psychiatrists, talking therapists and pharmaceutical companies all attempt to shape narratives of depression. The current paper focuses on patient narratives about depression – in the context of these wider debates – to better elucidate the ways in which depression discourses are publically developing along varying lines. In conclusion, the paper suggests that we could better conceptualise the resulting ‘depression(s)’ with concepts such as ‘society of mind’ and notions of subjectivity unbounded by individuals

    Contribution of Exogenous Genetic Elements to the Group A Streptococcus Metagenome

    Get PDF
    Variation in gene content among strains of a bacterial species contributes to biomedically relevant differences in phenotypes such as virulence and antimicrobial resistance. Group A Streptococcus (GAS) causes a diverse array of human infections and sequelae, and exhibits a complex pathogenic behavior. To enhance our understanding of genotype-phenotype relationships in this important pathogen, we determined the complete genome sequences of four GAS strains expressing M protein serotypes (M2, M4, and 2 M12) that commonly cause noninvasive and invasive infections. These sequences were compared with eight previously determined GAS genomes and regions of variably present gene content were assessed. Consistent with the previously determined genomes, each of the new genomes is ∼1.9 Mb in size, with ∼10% of the gene content of each encoded on variably present exogenous genetic elements. Like the other GAS genomes, these four genomes are polylysogenic and prophage encode the majority of the variably present gene content of each. In contrast to most of the previously determined genomes, multiple exogenous integrated conjugative elements (ICEs) with characteristics of conjugative transposons and plasmids are present in these new genomes. Cumulatively, 242 new GAS metagenome genes were identified that were not present in the previously sequenced genomes. Importantly, ICEs accounted for 41% of the new GAS metagenome gene content identified in these four genomes. Two large ICEs, designated 2096-RD.2 (63 kb) and 10750-RD.2 (49 kb), have multiple genes encoding resistance to antimicrobial agents, including tetracycline and erythromycin, respectively. Also resident on these ICEs are three genes encoding inferred extracellular proteins of unknown function, including a predicted cell surface protein that is only present in the genome of the serotype M12 strain cultured from a patient with acute poststreptococcal glomerulonephritis. The data provide new information about the GAS metagenome and will assist studies of pathogenesis, antimicrobial resistance, and population genomics

    Mutations in Zebrafish lrp2 Result in Adult-Onset Ocular Pathogenesis That Models Myopia and Other Risk Factors for Glaucoma

    Get PDF
    The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, Bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals—but not all—develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease

    Pleiotropic Effects of Deubiquitinating Enzyme Ubp5 on Growth and Pathogenesis of Cryptococcus neoformans

    Get PDF
    Ubiquitination is a reversible protein modification that influences various cellular processes in eukaryotic cells. Deubiquitinating enzymes remove ubiquitin, maintain ubiquitin homeostasis and regulate protein degradation via the ubiquitination pathway. Cryptococcus neoformans is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immunocompromised population. In order to understand the possible influence deubiquitinases have on growth and virulence of the model pathogenic yeast Cryptococcus neoformans, we generated deletion mutants of seven putative deubiquitinase genes. Compared to other deubiquitinating enzyme mutants, a ubp5Δ mutant exhibited severely attenuated virulence and many distinct phenotypes, including decreased capsule formation, hypomelanization, defective sporulation, and elevated sensitivity to several external stressors (such as high temperature, oxidative and nitrosative stresses, high salts, and antifungal agents). Ubp5 is likely the major deubiquitinating enzyme for stress responses in C. neoformans, which further delineates the evolutionary divergence of Cryptococcus from the model yeast S. cerevisiae, and provides an important paradigm for understanding the potential role of deubiquitination in virulence by other pathogenic fungi. Other putative deubiquitinase mutants (doa4Δ and ubp13Δ) share some phenotypes with the ubp5Δ mutant, illustrating functional overlap among deubiquitinating enzymes in C. neoformans. Therefore, deubiquitinating enzymes (especially Ubp5) are essential for the virulence composite of C. neoformans and provide an additional yeast survival and propagation advantage in the host

    Metabolic flux analysis and the NAD(P)H/NAD(P) + ratios in chemostat cultures of Azotobacter vinelandii

    Get PDF
    Azotobacter vinelandii is a bacterium that produces alginate and polyhydroxybutyrate (P3HB); however, the role of NAD(P)H/NAD(P) + ratios on the metabolic fluxes through biosynthesis pathways of these biopolymers remains unknown. The aim of this study was to evaluate the NAD(P)H/NAD(P) + ratios and the metabolic fluxes involved in alginate and P3HB biosynthesis, under oxygen-limiting and non-limiting oxygen conditions. The results reveal that changes in the oxygen availability have an important effect on the metabolic fluxes and intracellular NADPH/NADP + ratio, showing that at the lowest OTR (2.4 mmol L −1 h −1), the flux through the tricarboxylic acid (TCA) cycle decreased 27.6-fold, but the flux through the P3HB biosynthesis increased 6.6-fold in contrast to the cultures without oxygen limitation (OTR = 14.6 mmol L −1 h −1). This was consistent with the increase in the level of transcription of phbB and the P3HB biosynthesis. In addition, under conditions without oxygen limitation, there was an increase in the carbon uptake rate (twofold), as well as in the flux through the pentose phosphate (PP) pathway (4.8-fold), compared to the condition of 2.4 mmol L −1 h −1. At the highest OTR condition, a decrease in the NADPH/NADP + ratio of threefold was observed, probably as a response to the high respiration rate induced by the respiratory protection of the nitrogenase under diazotrophic conditions, correlating with a high expression of the uncoupled respiratory chain genes (ndhII and cydA) and induction of the expression of the genes encoding the nitrogenase complex (nifH). We have demonstrated that changes in oxygen availability affect the internal redox state of the cell and carbon metabolic fluxes. This also has a strong impact on the TCA cycle and PP pathway as well as on alginate and P3HB biosynthetic fluxes

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.ope

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore