373 research outputs found

    ZFOURGE catalogue of AGN candidates: an enhancement of 160-Όm-derived star formation rates in active galaxies to z  = 3.2

    Get PDF
    We investigate active galactic nuclei (AGN) candidates within the FourStar Galaxy Evolution Survey (ZFOURGE) to determine the impact they have on star formation in their host galaxies. We first identify a population of radio, X-ray, and infrared-selected AGN by cross-matching the deep Ks-band imaging of ZFOURGE with overlapping multiwavelength data. From this, we construct a mass-complete (log(M∗/M⊙M∗/M⊙) ≄9.75), AGN luminosity limited sample of 235 AGN hosts over z = 0.2–3.2. We compare the rest-frame U − V versus V − J (UVJ) colours and specific star formation rates (sSFRs) of the AGN hosts to a mass-matched control sample of inactive (non-AGN) galaxies. UVJ diagnostics reveal AGN tend to be hosted in a lower fraction of quiescent galaxies and a higher fraction of dusty galaxies than the control sample. Using 160 ÎŒm Herschel PACS data, we find the mean specific star formation rate of AGN hosts to be elevated by 0.34 ± 0.07 dex with respect to the control sample across all redshifts. This offset is primarily driven by infrared-selected AGN, where the mean sSFR is found to be elevated by as much as a factor of ∌5. The remaining population, comprised predominantly of X-ray AGN hosts, is found mostly consistent with inactive galaxies, exhibiting only a marginal elevation. We discuss scenarios that may explain these findings and postulate that AGN are less likely to be a dominant mechanism for moderating galaxy growth via quenching than has previously been suggested

    3D Studies of Neutral and Ionised Gas and Stars in Seyfert and Inactive Galaxies

    Get PDF
    We are conducting the first systematic 3D spectroscopic imaging survey to quantify the properties of the atomic gas (HI) in a distance-limited sample of 28 Seyfert galaxies and a sample of 28 inactive control galaxies with well-matched optical properties (the VHIKINGS survey). This study aims to address the role of the host galaxy in nuclear activity and confront outstanding controversies in optical/IR imaging surveys. Early results show possible relationships between Seyfert activity and HI extent, content and the prevalence of small, nearby gas-rich dwarf galaxies (M(HI)~10^7 Msun); results will be tested via rigorous comparison with control galaxies. Initial results from our optical followup study of 15 of our galaxies using the SAURON integral field unit on the WHT suggest a possible difference between Seyfert and inactive stellar and gaseous kinematics that support the conclusion that internal kinematics of galaxies are the key to nuclear activity.Comment: 6 pages to be published in the proceedings of "The Fate of Gas in Galaxies", held in Dwingeloo, July 200

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961-1990 baseline relationships

    Get PDF
    Aim: Understanding the spatial distribution of high priority habitats and developing predictive models using climate and environmental variables to replicate these distributions are desirable conservation goals. The aim of this study was to model and elucidate the contributions of climate and topography to the distribution of a priority blanket bog habitat in Ireland, and to examine how this might inform the development of a climate change predictive capacity for peat-lands in Ireland. Methods: Ten climatic and two topographic variables were recorded for grid cells with a spatial resolution of 1010 km, covering 87% of the mainland land surface of Ireland. Presence-absence data were matched to these variables and generalised linear models (GLMs) fitted to identify the main climatic and terrain predictor variables for occurrence of the habitat. Candidate predictor variables were screened for collinearity, and the accuracy of the final fitted GLM was evaluated using fourfold cross-validation based on the area under the curve (AUC) derived from a receiver operating characteristic (ROC) plot. The GLM predicted habitat occurrence probability maps were mapped against the actual distributions using GIS techniques. Results: Despite the apparent parsimony of the initial GLM using only climatic variables, further testing indicated collinearity among temperature and precipitation variables for example. Subsequent elimination of the collinear variables and inclusion of elevation data produced an excellent performance based on the AUC scores of the final GLM. Mean annual temperature and total mean annual precipitation in combination with elevation range were the most powerful explanatory variable group among those explored for the presence of blanket bog habitat. Main conclusions: The results confirm that this habitat distribution in general can be modelled well using the non-collinear climatic and terrain variables tested at the grid resolution used. Mapping the GLM-predicted distribution to the observed distribution produced useful results in replicating the projected occurrence of the habitat distribution over an extensive area. The methods developed will usefully inform future climate change predictive modelling for Irelan

    Saethre-Chotzen syndrome : cranofacial anomalies caused by genetic changes in the TWIST gene

    Get PDF
    In this thesis, one of the most frequently occurring and most variable craniosynostosis syndromes was investigated; Saethre-Chotzen syndrome. Craniosynostosis is the premature obliteration of cranial sutures in the developing embryo. It can also occur in the first few months of life. Saethre-Chotzen syndrome is, besides craniosynostosis, characterized by specific facial and limb abnormalities, of which the most frequently reported are ptosis, prominent crus helicis, cutaneous syndactyly of digit 2 and 3 on both hands and feet, and broad halluces. Saethre-Chotzen syndrome has been linked to the TWIST gene on chromosome 7p21.1. Mutations in and variably sized deletions of this gene can be found in patients with clinical features of Saethre-Chotzen syndrome. The latter, TWIST deletions, often also include part of the surrounding chromosome 7p and are reported to be associated with mental retardation. In Saethre-Chotzen patients, in whom neither a mutation nor a deletion of TWIST had been found, the FGFR3 P250R mutation was in some cases detected. This mutation has specifically been linked to Muenke syndrome that is characterized by unior bicoronal synostosis and slight facial dysmorphology. However, a Saethre-Chotzen like phenotype can also result from this mutation. Because of the possible overlap of Saethre-Chotzen with Muenke syndrome, these syndromes were studied in order to provide clinical criteria that discriminate between the two (chapter 4). Many phenotypic features occur in both syndromes. In addition, although unicoronal synostosis occurs slightly more frequently in Muenke syndrome, unicoronal and bicoronal synostosis are seen in both syndromes. The discrimination between Saethre-Chotzen and Muenke is often not made easily and the associated genes, TWIST and FGFR3, respectively, are simultaneously tested for pathogenic m

    W boson polarization measurement in the ttbar dilepton channel using the CDF II Detector

    Full text link
    We present a measurement of WW boson polarization in top-quark decays in ttˉt\bar{t} events with decays to dilepton final states using 5.1fb−15.1 {\rm fb^{-1}} of integrated luminosity in ppˉp\bar{p} collisions collected by the CDF II detector at the Tevatron. A simultaneous measurement of the fractions of longitudinal (f0f_0) and right-handed (f+f_+) WW bosons yields the results f0=0.71−0.17+0.18(stat)±0.06(syst)f_0 = 0.71 ^{+0.18}_{-0.17} {\rm (stat)} \pm 0.06 {\rm (syst)} and f+=−0.07±0.09(stat)±0.03(syst)f_+ = -0.07 \pm 0.09 {\rm (stat)} \pm 0.03 {\rm (syst)}. Combining this measurement with our previous result based on single lepton final states, we obtain f0=0.84±0.09(stat)±0.05(syst)f_0 = 0.84 \pm 0.09 {\rm (stat)} \pm 0.05 {\rm (syst)} and f+=−0.16±0.05(stat)±0.04(syst)f_{+} = -0.16 \pm 0.05 {\rm (stat)} \pm 0.04 {\rm (syst)}. The results are consistent with standard model expectation.Comment: Published in Phys. Lett.

    EuFe2_2As2_2 under high pressure: an antiferromagnetic bulk superconductor

    Get PDF
    We report the ac magnetic susceptibility χac\chi_{ac} and resistivity ρ\rho measurements of EuFe2_2As2_2 under high pressure PP. By observing nearly 100% superconducting shielding and zero resistivity at PP = 28 kbar, we establish that PP-induced superconductivity occurs at Tc∌T_c \sim~30 K in EuFe2_2As2_2. ρ\rho shows an anomalous nearly linear temperature dependence from room temperature down to TcT_c at the same PP. χac\chi_{ac} indicates that an antiferromagnetic order of Eu2+^{2+} moments with TN∌T_N \sim~20 K persists in the superconducting phase. The temperature dependence of the upper critical field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
    • 

    corecore