772 research outputs found

    A Comprehensive Archival Chandra Search for X-ray Emission from Ultracompact Dwarf Galaxies

    Full text link
    We present the first comprehensive archival study of the X-ray properties of ultracompact dwarf (UCD) galaxies, with the goal of identifying weakly-accreting central black holes in UCDs. Our study spans 578 UCDs distributed across thirteen different host systems, including clusters, groups, fossil groups, and isolated galaxies. Of the 336 spectroscopically-confirmed UCDs with usable archival Chandra imaging observations, 21 are X-ray-detected. Imposing a completeness limit of LX>2×1038L_X>2\times10^{38} erg s−1^{-1}, the global X-ray detection fraction for the UCD population is ∼3%\sim3\%. Of the 21 X-ray-detected UCDs, seven show evidence of long-term X-ray time variability on the order of months to years. X-ray-detected UCDs tend to be more compact than non-X-ray-detected UCDs, and we find tentative evidence that the X-ray detection fraction increases with surface luminosity density and global stellar velocity dispersion. The X-ray emission of UCDs is fully consistent with arising from a population of low-mass X-ray binaries (LMXBs). In fact, there are fewer X-ray sources than expected using a naive extrapolation from globular clusters. Invoking the fundamental plane of black hole activity for SUCD1 near the Sombrero galaxy, for which archival Jansky Very Large Array imaging at 5 GHz is publicly available, we set an upper limit on the mass of a hypothetical central black hole in that UCD to be ≲105M⊙\lesssim10^5M_{\odot}. While the majority of our sources are likely LMXBs, we cannot rule out central black holes in some UCDs based on X-rays alone, and so we address the utility of follow-up radio observations to find weakly-accreting central black holes.Comment: 20 pages, 6 figures, re-submitted to ApJ after minor revision

    Calcium-rich Gap Transients: Solving the Calcium Conundrum in the Intracluster Medium

    Get PDF
    X-ray measurements suggest the abundance of Calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the Calcium conundrum in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as Calcium-rich gap transients. Although the Calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high Calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ2\chi^{2} goodness-of-fit metric improves from 84 to 2 by including this new class. Moreover, Calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of a Calcium-rich gap transients in clusters and groups far from any individual galaxy suggests supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous Calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs

    Gas stripping in galaxy groups - the case of the starburst spiral NGC 2276

    Get PDF
    Ram pressure stripping of galactic gas is generally assumed to be inefficient in galaxy groups due to the relatively low density of the intragroup medium and the small velocity dispersions of groups. To test this assumption, we obtained Chandra X-ray data of the starbursting spiral NGC 2276 in the NGC 2300 group of galaxies, a candidate for a strong galaxy interaction with hot intragroup gas. The data reveal a shock-like feature along the western edge of the galaxy and a low-surface-brightness tail extending to the east, similar to the morphology seen in other wavebands. Spatially resolved spectroscopy shows that the data are consistent with intragroup gas being pressurized at the leading western edge of NGC 2276 due to the galaxy moving supersonically through the intragroup medium at a velocity ~850 km/s. Detailed modelling of the gravitational potential of NGC 2276 shows that the resulting ram-pressure could significantly affect the morphology of the outer gas disc but is probably insufficient to strip large amounts of cold gas from the disc. We estimate the mass loss rates due to turbulent viscous stripping and starburst outflows being swept back by ram pressure, showing that both mechanisms could plausibly explain the presence of the X-ray tail. Comparison to existing HI measurements shows that most of the gas escaping the galaxy is in a hot phase. With a total mass loss rate of roughly 5 M_Sun/yr, the galaxy could be losing its entire present HI supply within a Gyr. This demonstrates that the removal of galactic gas through interactions with a hot intragroup medium can occur rapidly enough to transform the morphology of galaxies in groups. Implications of this for galaxy evolution in groups and clusters are briefly discussed.Comment: 16 pages, 8 figures, accepted for publication in MNRA
    • …
    corecore