200 research outputs found

    A Computationally Efficient Method for Estimating Multi-Model Process Sensitivity Index

    Get PDF
    Identification of important processes of a hydrologic system is critical for improving process-based hydrologic modeling. To identify important processes while jointly considering parametric and model uncertainty, Dai et al. (2017), https://doi.org/10.1002/2016WR019715, developed a multi-model process sensitivity index. Numerical evaluation of the index using a brute force Monte Carlo (MC) simulation is computationally expensive, because it requires a nested structure of parameter sampling and the number of model simulations is on the order of N-2 (N being the number of parameter samples). To reduce computational cost, we develop a new method (here denoted as quasi-MC for brevity) that uses triple sets of parameter samples (generated using quasi-MC sequence) to remove the nested structure of parameter sampling in a theoretically rigorous way. The quasi-MC method reduces the number of model simulations from the order of N-2 to 2N. The performance of the method is assessed against the brute force MC approach and the recent binning method developed by Dai et al. (2017), https://doi.org/10.1002/2016WR019715, through two synthetic cases of groundwater flow and solute transport modeling. Due to its rigorous theoretical foundation, the quasi-MC method overcomes the limitations imposed by the inherently empirical nature of the binning method. We find that the quasi-MC method outperforms both the brute force MC and the binning method in terms of computational requirements and theoretical aspects, thus strengthening its potential for the assessment of process sensitivity indices subject to various sources of uncertainty

    Optimizing expression and purification of an ATP-binding gene gsiA from Escherichia coli k-12 by using GFP fusion

    Get PDF
    The cloning, expression and purification of the glutathione (sulfur) import system ATP-binding protein (gsiA) was carried out. The coding sequence of Escherichia coli gsiA, which encodes the ATP-binding protein of a glutathione importer, was amplified by PCR, and then inserted into a prokaryotic expression vector pWaldo-GFPe harboring green fluorescent protein (GFP) reporter gene. The resulting recombinant plasmid pWaldo-GFP-GsiA was transformed into various E. coli strains, and expression conditions were optimized. The effect of five E. coli expression strains on the production of the recombinant gsiA protein was evaluated. E. coli BL21 (DE3) was found to be the most productive strain for GsiA-GFP fusion-protein expression, most of which was insoluble fraction. However, results from in-gel and Western blot analysis suggested that expression of recombinant GsiA in Rosetta (DE3) provides an efficient source in soluble form. By using GFP as reporter, the most suitable host strain was conveniently obtained, whereby optimizing conditions for overexpression and purification of the proteins for further functional and structural studies, became, not only less laborious, but also time-saving

    Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrophages expressing the pro-angiogenic transcription factor hypoxia-inducible factor (HIF)-1alpha have been demonstrated in rheumatoid arthritis (RA) in the synovial tissue. Aim of the present study was to investigate intracellular signal transduction regulation of pro-inflammatory HIF-1 alpha expression in macrophages to identify possible new intervention strategies. We investigated the effects of CaMKII-inhibitors amongst other kinase inhibitors, on HIF-1 alpha expression and downstream production of pro-angiogenic factors in macrophages.</p> <p>Methods</p> <p>Differentiated THP-1 cells and synovial fluid (SF) macrophages were stimulated with 1 μg/ml LPS with or without pretreatment with specific inhibitors of the ERK pathway (PD98059), the PI3K pathway (LY294002), and the CaMKII pathway (KN93 and SMP-114). mRNA and protein expression of HIF-1 alpha, VEGF, MMP-9, and IL-8 was measured in cell lysates and cell supernatants.</p> <p>Results</p> <p>HIF-1 alpha protein expression in LPS-stimulated THP-1 macrophages could be blocked by ERK- and PI3K-inhibitors, but also by the CaMKII inhibitor KN93. THP-1 and SF macrophages produced high levels of VEGF, IL-8, and MMP-9, and VEGF protein production was significantly inhibited by PI3K-inhibitor, and by both CaMKII inhibitors. LPS stimulation in an hypoxic environment did not change VEGF levels, suggesting that LPS induced VEGF production in macrophages is more important than the hypoxic induction.</p> <p>Conclusions</p> <p>Expression of HIF-1 alpha and downstream effects in macrophages are regulated by ERK-, PI3K, but also by CaMKII pathways. Inhibition of HIF-1α protein expression and significant inhibition of VEGF production in macrophages was found using CaMKII inhibitors. This is an unknown but very interesting effect of the CaMKII inhibitor SMP-114, which has been in clinical trial as DMARD for the treatment of RA. This effect may contribute to the anti-arthritic effects of SMP-114.</p

    Enhanced effects of cigarette smoke extract on inflammatory cytokine expression in IL-1β-activated human mast cells were inhibited by Baicalein via regulation of the NF-κB pathway

    Get PDF
    Background: Human mast cells are capable of a wide variety of inflammatory responses and play a vital role in the pathogenesis of inflammatory diseases such as allergy, asthma, and atherosclerosis. We have reported that cigarette smoke extract (CSE) significantly increased IL-6 and IL-8 production in IL-1β-activated human mast cell line (HMC-1). Baicalein (BAI) has anti-inflammatory properties and inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from HMC-1. The goal of the present study was to examine the effect of BAI on IL-6 and IL-8 production from CSE-treated and IL-1β-activated HMC-1.Methods: Main-stream (Ms) and Side-stream (Ss) cigarette smoke were collected onto fiber filters and extracted in RPMI-1640 medium. Two ml of HMC-1 at 1 × 10 6 cells/mL were cultured with CSE in the presence or absence of IL-1β (10 ng/mL) for 24 hrs. A group of HMC-1 cells stimulated with both IL-1β (10 ng/ml) and CSE was also treated with BAI. The expression of IL-6 and IL-8 was assessed by ELISA and RT-PCR. NF-κB activation was measured by electrophoretic mobility shift assay (EMSA) and IκBα degradation by Western blot.Results: Both Ms and Ss CSE significantly increased IL-6 and IL-8 production (p \u3c 0.001) in IL-1β-activated HMC-1. CSE increased NF-κB activation and decreased cytoplasmic IκBα proteins in IL-1β-activated HMC-1. BAI (1.8 to 30 μM) significantly inhibited production of IL-6 and IL-8 in a dose-dependent manner in IL-1β-activated HMC-1 with the optimal inhibition concentration at 30 μM, which also significantly inhibited the enhancing effect of CSE on IL-6 and IL-8 production in IL-1β-activated HMC-1. BAI inhibited NF-κB activation and increased cytoplasmic IκBα proteins in CSE-treated and IL-1β-activated HMC-1.Conclusions: Our results showed that CSE significantly increased inflammatory cytokines IL-6 and IL-8 production in IL-1β-activated HMC-1. It may partially explain why cigarette smoke contributes to lung and cardiovascular diseases. BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation. This inhibitory effect of BAI on the expression of inflammatory cytokines induced by CSE suggests its usefulness in the development of novel anti-inflammatory therapies

    Lysosomes in iron metabolism, ageing and apoptosis

    Get PDF
    The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH ∼4 to 5) that constantly fuse and divide. It receives a large number of hydrolases (∼50) from the trans-Golgi network, and substrates from both the cells’ outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while ‘resting’ lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis

    Full text link
    Reprogrammed glucose metabolism as a result of increased glycolysis and glucose uptake is a hallmark of cancer. Here we show that cancer cells can suppress glucose uptake by non-tumour cells in the pre-metastatic niche, by secreting vesicles that carry high levels of the miR-122 microRNA. High miR-122 levels in the circulation have been associated with metastasis in breast cancer patients and we show that cancer-cell-secreted miR-122 facilitates metastasis by increasing nutrient availability in the pre-metastatic niche. Mechanistically cancer-cell-derived miR-122 suppresses glucose uptake by niche cells in vitro and in vivo by downregulating the glycolytic enzyme pyruvate kinase (PKM). In vivo inhibition of miR-122 restores glucose uptake in distant organs, including brain and lungs, and decreases the incidence of metastasis. These results demonstrate that by modifying glucose utilization by recipient pre-metastatic niche cells, cancer-derived extracellular miR-122 is able to reprogram systemic energy metabolism to facilitate disease progression
    corecore