119 research outputs found

    PSMA-Specific CAR-Engineered T Cells Eradicate Disseminated Prostate Cancer in Preclinical Models.

    Get PDF
    Immunology-based interventions have been proposed as a promising curative chance to effectively attack postoperative minimal residual disease and distant metastatic localizations of prostate tumors. We developed a chimeric antigen receptor (CAR) construct targeting the human prostate-specific membrane antigen (hPSMA), based on a novel and high affinity specific mAb. As a transfer method, we employed last-generation lentiviral vectors (LV) carrying a synthetic bidirectional promoter capable of robust and coordinated expression of the CAR molecule, and a bioluminescent reporter gene to allow the tracking of transgenic T cells after in vivo adoptive transfer. Overall, we demonstrated that CAR-expressing LV efficiently transduced short-term activated PBMC, which in turn were readily stimulated to produce cytokines and to exert a relevant cytotoxic activity by engagement with PSMA+ prostate tumor cells. Upon in vivo transfer in tumor-bearing mice, CAR-transduced T cells were capable to completely eradicate a disseminated neoplasia in the majority of treated animals, thus supporting the translation of such approach in the clinical setting

    Mutational and copy number asset of primary sporadic neuroendocrine tumors of the small intestine

    Get PDF
    Small intestine neuroendocrine tumors (SI-NETs) represent the most common histotype among small intestine neoplasms, and metastatic disease is usually present at diagnosis. A retrospective series of 52 sporadic primary surgically resected SI-NETs, which were metastatic at diagnosis, was analyzed by high-coverage target sequencing (HCTS) for the mutational status of 57 genes and copy number status of 40 genes selected from recently published genome sequencing data. Seven genes were found to be recurrently mutated: CDKN1B (9.6%), APC and CDKN2C (each 7.7%), BRAF, KRAS, PIK3CA, and TP53 (each 3.8%). Copy number analysis showed frequent allelic loss of 4 genes located on chromosome 18 (BCL2, CDH19, DCC, and SMAD4) in 23/52 (44.2%) and losses on chromosomes 11 (38%) and 16 (15%). Other recurrent copy number variations were gains for genes located on chromosomes 4 (31%), 5 (27%), 14 (36%), and 20 (20%). Univariate survival analysis showed that SRC gene copy number gains were associated with a poorer prognosis (p = 0.047). Recurrent copy number variations are important events in SI-NET and SRC may represent a novel prognostic biomarker for this tumor type

    clinico pathological features treatments and survival of malignant insulinomas a multicenter study

    Get PDF
    Introduction Management of malignant insulinomas is challenging due to the need to control both hypoglycaemic syndrome and tumor growth. Literature data is limited to small series. Aim of the study To analyze clinico-pathological characteristics, treatments and prognosis of patients with malignant insulinoma. Materials and methods Multicenter retrospective study on 31 patients (male: 61.3%) diagnosed between 1988 and 2017. Results The mean age at diagnosis was 48 years. The mean NET diameter was 41 ± 31 mm, and 70.8% of NETs were G2. Metastases were widespread in 38.7%, hepatic in 41.9% and only lymph nodal in 19.4%. In 16.1% of the cases, the hypoglycaemic syndrome occurred after 46 ± 35 months from the diagnosis of originally non-functioning NET, whereas in 83.9% of the cases it led to the diagnosis of NET, of which 42.3% with a mean diagnostic delay of 32.7 ± 39.8 months. Surgical treatment was performed in 67.7% of the cases. The 5-year survival rate was 62%. Overall survival was significantly higher in patients with Ki-67 ≤10% (P = 0.03), insulin level <60 µU/mL (P = 0.015) and in patients who underwent surgery (P = 0.006). Peptide Receptor Radionuclide Therapy (PRRT) was performed in 45.1%, with syndrome control in 93% of patients. Conclusions Our study includes the largest series of patients with malignant insulinoma reported to date. The hypoglycaemic syndrome may occur after years in initially non-functioning NETs or be misunderstood with delayed diagnosis of NETs. Surgical treatment and Ki67 ≤10% are prognostic factors associated with better survival. PPRT proved to be effective in the control of hypoglycaemia in majority of cases

    Is the Morphological Subtype of Extra-Pulmonary Neuroendocrine Carcinoma Clinically Relevant?

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-08-13, pub-electronic 2021-08-18Publication status: PublishedExtra-pulmonary neuroendocrine carcinomas (EP-NECs) are lethal cancers with limited treatment options. Identification of contributing factors to the observed heterogeneity of clinical outcomes within the EP-NEC family is warranted, to enable identification of effective treatments. A multicentre retrospective study investigated potential differences in “real-world” treatment/survival outcomes between small-cell (SC) versus (vs.) non-SC EP-NECs. One-hundred and seventy patients were included: 77 (45.3%) had SC EP-NECs and 93 (54.7%) had non-SC EP-NECs. Compared to the SC subgroup, the non-SC subgroup had the following features: (1) a lower mean Ki-67 index (69.3% vs. 78.7%; p = 0.002); (2) a lower proportion of cases with a Ki-67 index of ≥55% (73.9% vs. 88.7%; p = 0.025); (3) reduced sensitivity to first-line platinum/etoposide (objective response rate: 31.6% vs. 55.1%, p = 0.015; and disease control rate; 59.7% vs. 79.6%, p = 0.027); (4) worse progression-free survival (PFS) (adjusted-HR = 1.615, p = 0.016) and overall survival (OS) (adjusted-HR = 1.640, p = 0.015) in the advanced setting. Within the advanced EP-NEC cohort, subgroups according to morphological subtype and Ki-67 index (55% vs. ≥55%) had significantly different PFS (adjusted-p = 0.021) and OS (adjusted-p = 0.051), with the non-SC subgroup with a Ki-67 index of 55% and non-SC subgroup with a Ki-67 index of ≥55% showing the best and worst outcomes, respectively. To conclude, the morphological subtype of EP-NEC provides complementary information to the Ki-67 index and may aid identification of patients who could benefit from alternative first-line treatment strategies to platinum/etoposide

    DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association

    Get PDF
    Here we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Multi-institutional development and external validation of a nomogram to predict recurrence after curative resection of pancreatic neuroendocrine tumors

    Get PDF
    Objective: To develop a nomogram estimating the probability of recurrence free at 5 years after resection for localized grade 1 (G1)/ grade 2 (G2) pancreatic neuroendocrine tumors (PanNETs). Background: Among patients undergoing resection of PanNETs, approximately 17% experience recurrence. It is not established which patients are at risk, with no consensus on optimal follow-up. Method: A multi-institutional database of patients with G1/G2 PanNETs treated at 2 institutions was used to develop a nomogram estimating the rate of freedom from recurrence at 5 years after curative resection. A second cohort of patients from 3 additional institutions was used to validate the nomogram. Prognostic factors were assessed by univariate analysis using Cox regression model. The nomogram was internally validated using bootstrap resampling method and on the external cohort. Performance was assessed by concordance index (c-index) and a calibration curve. Results: The nomogram was constructed using a cohort of 632 patients. Overall, 68% of PanNETs were G1, the median follow-up was 51 months, and we observed 74 recurrences. Variables included in the nomogram were the number of positive nodes, tumor diameter, Ki-67, and vascular/perineural invasion. The model bias-corrected c-index from the internal validation was 0.85, which was higher than European Neuroendocrine Tumors Society/American Joint Committee on Cancer 8th staging scheme (c-index 0.76, P = &lt;0.001). On the external cohort of 328 patients, the nomogram c-index was 0.84 (95% confidence interval 0.79–0.88). Conclusion: Our externally validated nomogram predicts the probability of recurrence-free survival at 5 years after PanNETs curative resection, with improved accuracy over current staging systems. Estimating individual recurrence risk will guide the development of personalized surveillance programs after surgery

    DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association

    Get PDF
    Here we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore