46 research outputs found

    Erosion and the sediment conveyor in central Australia

    Get PDF
    Why are the Neogene sedimentary fills across central Australia generally thin and discontinuous? One long-standing explanation is that sluggish tectonism and intensified aridity have combined to suppress rates of erosion and sediment production yielding a landscape crowded with inherited, preMiocene forms. Quantifying rates of sediment production, residence time and transport is possible with numerous methods, but the recent growth of cosmogenic nuclide (CN) analysis has provided unprecedented quantitative insights to rates of landscape evolution. Measurements of in situ produced cosmogenic 10Be and 26Al integrate rates of surface processes over million-year timescales—the last part of the Neogene in which aridity has strengthened across the continental interior. We present a compilation of ~600 published and unpublished 10Be and 26Al measurements from central Australia with a focus on the Neogene Eyre Basin and its periphery. Outlying and inlying bedrock uplands serve as engines of sediment production via erosion of bedrock. Surrounding the bedrock outcrops are vast sediment conveyors of varying efficiency and tempo: hillslopes, pediments, and alluvial fans are interim storage/burial zones for sediment in transit to the network of low-gradient rivers, dunes, and playas towards base level. Interactions between fluvial and aeolian processes are especially pertinent to sediment flux in the Eyre Basin. Major rivers such as the Cooper and Finke traverse dunefields in their lower reaches where quantities of alluvia are recirculated into dunes and vice versa. Tracking the trajectories of sediment from source-to-sink (including aeolian recirculation) remains a major challenge, but is central to unravelling the sedimentary dynamics of central Australia's Neogene basins. Based on the CN compilation we estimate 1) spatially averaged erosion rates at the scale of a hillslope or river catchment; 2) pointbased erosion rates on bedrock surfaces; 3) residence time of sediment in hillslope regolith and alluvial fans; and 4) cumulative burial history of sediments in transit. Catchment-scale erosion rates (n~100) are consistently low (<10 m/Myr) and include some of the lowest rates ever measured (~0.3 m/Myr); however, a small group of catchments in the Flinders Ras yield higher erosion rates (~30–60 m/Myr). Bedrock hillslopes (n~200) tend to erode even slower (<5 m/Myr), with a subset of Flinders Ras sites again being the exception (~10–30 m/Myr) and suggesting the influence of recent tectonism. Several CN depth-profiles measured on hillslopes and alluvial fans indicate sediment residence times >0.5 Myr, and high-resolution sampling along three hillslopes with differing morphology (linear, convex, and concave) reveals major variations in sediment production and transport rates that hint at the long-term evolution. In the rivers, fluvial sediments show a weak tendency to increase cumulative burial history downstream (1–2 Myr), consistent with the expanding accommodation space for storage and burial. Dune sediments sampled in the Simpson and Tirari dunefields (n~16) contain cumulative burial histories (up to 1.5 Myr) similar to that of the intersecting rivers. This points to an intimate mix of fluvial and aeolian processes in areas approaching base level. Curiously, these sediments occur in the lowest part of the continent and contain the longest histories of cumulative burial, yet do not form part of the thickest sedimentary fills in the Eyre Basin

    Coherent multi-flavour spin dynamics in a fermionic quantum gas

    Full text link
    Microscopic spin interaction processes are fundamental for global static and dynamical magnetic properties of many-body systems. Quantum gases as pure and well isolated systems offer intriguing possibilities to study basic magnetic processes including non-equilibrium dynamics. Here, we report on the realization of a well-controlled fermionic spinor gas in an optical lattice with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived intrinsic spin oscillations and investigate the transition from two-body to many-body dynamics. The latter results in a spin-interaction driven melting of a band insulator. Via an external magnetic field we control the system's dimensionality and tune the spin oscillations in and out of resonance. Our results open new routes to study quantum magnetism of fermionic particles beyond conventional spin 1/2 systems.Comment: 9 pages, 5 figure

    RNA delivery by extracellular vesicles in mammalian cells and its applications.

    Get PDF
    The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Corticosteroids in ophthalmology : drug delivery innovations, pharmacology, clinical applications, and future perspectives

    Get PDF
    corecore