91 research outputs found
Restricted Morphological and Behavioral Abnormalities following Ablation of β-Actin in the Brain
The local translation of β-actin is one mechanism proposed to regulate spatially-restricted actin polymerization crucial for nearly all aspects of neuronal development and function. However, the physiological significance of localized β-actin translation in neurons has not yet been demonstrated in vivo. To investigate the role of β-actin in the mammalian central nervous system (CNS), we characterized brain structure and function in a CNS-specific β-actin knock-out mouse (CNS-ActbKO). β-actin was rapidly ablated in the embryonic mouse brain, but total actin levels were maintained through upregulation of other actin isoforms during development. CNS-ActbKO mice exhibited partial perinatal lethality while survivors presented with surprisingly restricted histological abnormalities localized to the hippocampus and cerebellum. These tissue morphology defects correlated with profound hyperactivity as well as cognitive and maternal behavior impairments. Finally, we also identified localized defects in axonal crossing of the corpus callosum in CNS-ActbKO mice. These restricted defects occurred despite the fact that primary neurons lacking β-actin in culture were morphologically normal. Altogether, we identified novel roles for β-actin in promoting complex CNS tissue architecture while also demonstrating that distinct functions for the ubiquitously expressed β-actin are surprisingly restricted in vivo
In vivo Analysis of Choroid Plexus Morphogenesis in Zebrafish
BACKGROUND: The choroid plexus (ChP), a component of the blood-brain barrier (BBB), produces the cerebrospinal fluid (CSF) and as a result plays a role in (i) protecting and nurturing the brain as well as (ii) in coordinating neuronal migration during neurodevelopment. Until now ChP development was not analyzed in living vertebrates due to technical problems. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed the formation of the fourth ventricle ChP of zebrafish in the GFP-tagged enhancer trap transgenic line SqET33-E20 (Gateways) by a combination of in vivo imaging, histology and mutant analysis. This process includes the formation of the tela choroidea (TC), the recruitment of cells from rhombic lips and, finally, the coalescence of TC resulting in formation of ChP. In Notch-deficient mib mutants the first phase of this process is affected with premature GFP expression, deficient cell recruitment into TC and abnormal patterning of ChP. In Hedgehog-deficient smu mutants the second phase of the ChP morphogenesis lacks cell recruitment and TC cells undergo apoptosis. CONCLUSIONS/SIGNIFICANCE: This study is the first to demonstrate the formation of ChP in vivo revealing a role of Notch and Hedgehog signalling pathways during different developmental phases of this process
How to screen for non-adherence to antihypertensive therapy
The quality of assessment of non-adherence to treatment in hypertensive is poor. Within this review, we discuss the different methods used to assess adherence to blood-pressure-lowering medications in hypertension patients. Subjective reports such as physicians’ perceptions are inaccurate, and questionnaires completed by patients tend to overreport adherence and show a low diagnostic specificity. Indirect objective methods such as pharmacy database records can be useful, but they are limited by the robustness of the recorded data. Electronic medication monitoring devices are accurate but usually track adherence to only a single medication and can be expensive. Overall, the fundamental issue with indirect objective measures is that they do not fully confirm ingestion of antihypertensive medications. Detection of antihypertensive medications in body fluids using liquid chromatography–tandem mass spectrometry is currently, in our view, the most robust and clinically useful method to assess non-adherence to blood-pressure-lowering treatment. It is particularly helpful in patients presenting with resistant, refractory or uncontrolled hypertension despite the optimal therapy. We recommend using this diagnostic strategy to detect non-adherence alongside a no-blame approach tailoring support to address the perceptions (e.g. beliefs about the illness and treatment) and practicalities (e.g. capability and resources) influencing motivation and ability to adhere
Connecting Network Properties of Rapidly Disseminating Epizoonotics
To effectively control the geographical dissemination of infectious diseases, their properties need to be determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting network, we explored constructs meant to reveal the network properties associated with disease spread, which included the road structure.Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006), two models were compared: 1) 'connectivity', a model that integrated bio-physical concepts (the agent's transmission cycle, road topology) into indicators designed to measure networks ('nodes' or infected sites with short- and long-range links), and 2) 'contacts', which focused on infected individuals but did not assess connectivity.THE CONNECTIVITY MODEL SHOWED FIVE NETWORK PROPERTIES: 1) spatial aggregation of cases (disease clusters), 2) links among similar 'nodes' (assortativity), 3) simultaneous activation of similar nodes (synchronicity), 4) disease flows moving from highly to poorly connected nodes (directionality), and 5) a few nodes accounting for most cases (a "20:80" pattern). In both epizoonotics, 1) not all primary cases were connected but at least one primary case was connected, 2) highly connected, small areas (nodes) accounted for most cases, 3) several classes of nodes were distinguished, and 4) the contact model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity model. When assessed together, the synchronicity and directionality properties explained when and where an infectious disease spreads.Geo-temporal constructs of Network Theory's nodes and links were retrospectively validated in rapidly disseminating infectious diseases. They distinguished classes of cases, nodes, and networks, generating information usable to revise theory and optimize control measures. Prospective studies that consider pre-outbreak predictors, such as connecting networks, are recommended
Epigenetic regulation of centromeric chromatin: old dogs, new tricks?
The assembly of just a single kinetochore at the centromere of each sister chromatid is essential for accurate chromosome segregation during cell division. Surprisingly, despite their vital function, centromeres show considerable plasticity with respect to their chromosomal locations and activity. The establishment and maintenance of centromeric chromatin, and therefore the location of kinetochores, is epigenetically regulated. The histone H3 variant CENP-A is the key determinant of centromere identity and kinetochore assembly. Recent studies have identified many factors that affect CENP-A localization, but their precise roles in this process are unknown. We build on these advances and on new information about the timing of CENP-A assembly during the cell cycle to propose new models for how centromeric chromatin is established and propagated
Carboxylic ester hydrolases from hyperthermophiles
Carboxylic ester hydrolyzing enzymes constitute a large group of enzymes that are able to catalyze the hydrolysis, synthesis or transesterification of an ester bond. They can be found in all three domains of life, including the group of hyperthermophilic bacteria and archaea. Esterases from the latter group often exhibit a high intrinsic stability, which makes them of interest them for various biotechnological applications. In this review, we aim to give an overview of all characterized carboxylic ester hydrolases from hyperthermophilic microorganisms and provide details on their substrate specificity, kinetics, optimal catalytic conditions, and stability. Approaches for the discovery of new carboxylic ester hydrolases are described. Special attention is given to the currently characterized hyperthermophilic enzymes with respect to their biochemical properties, 3D structure, and classification
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
- …