136 research outputs found

    Investigation of enhanced double weight code in point to point access networks

    Get PDF
    © 2020 Published under licence by IOP Publishing Ltd. In this paper, an investigation and evaluation to enhanced double weight (EDW) code is performed, a new technique for code structuring and building using modified arithmetical model has been given for the code in place of employing previous technique based on Trial Inspections. Innovative design has been employed for the code into P2P networks using diverse weighted EDW code to be fitting into optical CDMA relevance applications. A new developed relation for EDW code is presented, the relation is based on studying and experimenting the effect of input transmission power with code weight, and the relation developed using numerical analysis method. This relation makes the estimation for the system input power needed more efficient. The results of the code has been explained by eye diagram and parametric illustrations from the simulated results. The result shows a magnificent performance of the code during high number of users and weight. On the other hand, the relation developed for power measurement helps to prevent power loss and consumption

    Investigation the nonlinear optical properties of silver nanoparticles using femtosecond laser

    Get PDF
    © 2020 Published under licence by IOP Publishing Ltd. In this research, the fabrication of silver nanoparticles and experimental nonlinear response (NLO). The fabrication of the silver nanoparticles has been done using E-Beam evaporation on a glass substrate (Ag-NPs) and investigation of their nonlinear optical response (NLO). The silver nanoparticles was evaluated by optical spectrum (UV-Vis) that shows localized surface Plasmon band at 375 nm. The experiment shows the nonlinear absorption and nonlinear refraction effect of silver nanoparticles, the silver nanoparticles is analysed by Z-Scan technique using a femtoseconds laser with 800 nm wavelength. The result shows the nonlinear absorption (NLA) is at 4.8710-4cmW-1, while (NLR) is at 7.9410-9cmW-1

    A Network Model of Local Field Potential Activity in Essential Tremor and the Impact of Deep Brain Stimulation

    Get PDF
    Essential tremor (ET), a movement disorder characterised by an uncontrollable shaking of the affected body part, is often professed to be the most common movement disorder, affecting up to one percent of adults over 40 years of age. The precise cause of ET is unknown, however pathological oscillations of a network of a number of brain regions are implicated in leading to the disorder. Deep brain stimulation (DBS) is a clinical therapy used to alleviate the symptoms of a number of movement disorders. DBS involves the surgical implantation of electrodes into specific nuclei in the brain. For ET the targeted region is the ventralis intermedius (Vim) nucleus of the thalamus. Though DBS is effective for treating ET, the mechanism through which the therapeutic effect is obtained is not understood. To elucidate the mechanism underlying the pathological network activity and the effect of DBS on such activity, we take a computational modelling approach combined with electrophysiological data. The pathological brain activity was recorded intra-operatively via implanted DBS electrodes, whilst simultaneously recording muscle activity of the affected limbs. We modelled the network hypothesised to underlie ET using the Wilson-Cowan approach. The modelled network exhibited oscillatory behaviour within the tremor frequency range, as did our electrophysiological data. By applying a DBS-like input we suppressed these oscillations. This study shows that the dynamics of the ET network support oscillations at the tremor frequency and the application of a DBS-like input disrupts this activity, which could be one mechanism underlying the therapeutic benefit

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research

    Factors associated with spontaneous stone passage in a contemporary cohort of patients presenting with acute ureteric colic. Results from the MIMIC Study (A Multi-centre cohort study evaluating the role of Inflammatory Markers in patients presenting with acute ureteric Colic)

    Get PDF
    Objectives There is conflicting data on the role of white blood cell count (WBC) and other inflammatory markers in spontaneous stone passage in patients with acute ureteric colic. The aim of the study was to assess the relationship of WBC and other routinely collected inflammatory and clinical markers including stone size, stone position and Medically Expulsive Therapy use (MET) with spontaneous stone passage (SSP) in a large contemporary cohort of patients with acute ureteric colic. Subjects and Methods Multi‐centre retrospective cohort study coordinated by the British Urology Researchers in Surgical Training (BURST) Research Collaborative at 71 secondary care hospitals across 4 countries (United Kingdom, Republic of Ireland, Australia and New Zealand). 4170 patients presented with acute ureteric colic and a computer tomography confirmed single ureteric stone. Our primary outcome measure was SSP as defined by the absence of need for intervention to assist stone passage. Multivariable mixed effects logistic regression was used to explore the relationship between key patient factors and SSP. Results 2518 patients were discharged with conservative management and had further follow up with a SSP rate of 74% (n = 1874/2518). Sepsis after discharge with conservative management was reported in 0.6% (n = 16/2518). On multivariable analysis neither WBC, Neutrophils or CRP were seen to predict SSP, with an adjusted OR of 0.97 [95% CI 0.91 to 1.04, p = 0.38], 1.06 [95% CI 0.99 to 1.13, p = 0.1] and 1.00 [95% CI 0.99 to 1.00, p = 0.17], respectively. Medical expulsive therapy (MET) also did not predict SSP [adjusted OR 1.11 [95% CI 0.76 to 1.61]). However, stone size and stone position were significant predictors. SSP for stones 7mm. For stones in the upper ureter the SSP rate was 52% [95% CI 48 to 56], middle ureter was 70% [95% CI 64 to 76], and lower ureter was 83% [95% CI 81 to 85]. Conclusion In contrast to the previously published literature, we found that in patients with acute ureteric colic who are discharged with initial conservative management, neither WBC, Neutrophil count or CRP help determine the likelihood of spontaneous stone passage. We also found no overall benefit from the use of MET. Stone size and position are important predictors and our findings represent the most comprehensive stone passage rates for each mm increase in stone size from a large contemporary cohort adjusting for key potential confounders. We anticipate that these data will aid clinicians managing patients with acute ureteric colic and help guide management decisions and the need for intervention

    Advancing brain barriers RNA sequencing: guidelines from experimental design to publication

    Get PDF
    Background: RNA sequencing (RNA-Seq) in its varied forms has become an indispensable tool for analyzing differential gene expression and thus characterization of specific tissues. Aiming to understand the brain barriers genetic signature, RNA seq has also been introduced in brain barriers research. This has led to availability of both, bulk and single-cell RNA-Seq datasets over the last few years. If appropriately performed, the RNA-Seq studies provide powerful datasets that allow for significant deepening of knowledge on the molecular mechanisms that establish the brain barriers. However, RNA-Seq studies comprise complex workflows that require to consider many options and variables before, during and after the proper sequencing process.Main body: In the current manuscript, we build on the interdisciplinary experience of the European PhD Training Network BtRAIN (https://www.btrain-2020.eu/) where bioinformaticians and brain barriers researchers collaborated to analyze and establish RNA-Seq datasets on vertebrate brain barriers. The obstacles BtRAIN has identified in this process have been integrated into the present manuscript. It provides guidelines along the entire workflow of brain barriers RNA-Seq studies starting from the overall experimental design to interpretation of results. Focusing on the vertebrate endothelial blood–brain barrier (BBB) and epithelial blood-cerebrospinal-fluid barrier (BCSFB) of the choroid plexus, we provide a step-by-step description of the workflow, highlighting the decisions to be made at each step of the workflow and explaining the strengths and weaknesses of individual choices made. Finally, we propose recommendations for accurate data interpretation and on the information to be included into a publication to ensure appropriate accessibility of the data and reproducibility of the observations by the scientific community.Conclusion: Next generation transcriptomic profiling of the brain barriers provides a novel resource for understanding the development, function and pathology of these barrier cells, which is essential for understanding CNS homeostasis and disease. Continuous advancement and sophistication of RNA-Seq will require interdisciplinary approaches between brain barrier researchers and bioinformaticians as successfully performed in BtRAIN. The present guidelines are built on the BtRAIN interdisciplinary experience and aim to facilitate collaboration of brain barriers researchers with bioinformaticians to advance RNA-Seq study design in the brain barriers community

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore