133 research outputs found

    Supramolecular networks stabilise and functionalise black phosphorus

    Get PDF
    The limited stability of the surface of black phosphorus (BP) under atmospheric conditions is a significant constraint on the exploitation of this layered material and its few layer analogue, phosphorene, as an optoelectronic material. Here we show that supramolecular networks stabilised by hydrogen bonding can be formed on BP, and that these monolayer-thick films can passivate the BP surface and inhibit oxidation under ambient conditions. The supramolecular layers are formed by solution deposition and we use atomic force microscopy to obtain images of the BP surface and hexagonal supramolecular networks of trimesic acid and melamine cyanurate (CA.M) under ambient conditions. The CA.M network is aligned with rows of phosphorus atoms and forms large domains which passivate the BP surface for more than a month, and also provides a stable supramolecular platform for the sequential deposition of 1,2,4,5-tetrakis(4-carboxyphenyl)benzene to form supramolecular heterostructures

    Thyroid Disruption by Di-n-Butyl Phthalate (DBP) and Mono-n-Butyl Phthalate (MBP) in Xenopus laevis

    Get PDF
    BACKGROUND: Di-n-butyl phthalate (DBP), a chemical widely used in many consumer products, is estrogenic and capable of producing seriously reproductive and developmental effects in laboratory animals. However, recent in vitro studies have shown that DBP and mono-n-butyl phthalate (MBP), the major metabolite of DBP, possessed thyroid hormone receptor (TR) antagonist activity. It is therefore important to consider DBP and MBP that may interfere with thyroid hormone system. METHODOLOGY/PRINCIPAL FINDINGS: Nieuwkoop and Faber stage 51 Xenopus laevis were exposed to DBP and MBP (2, 10 or 15 mg/L) separately for 21 days. The two test chemicals decelerated spontaneous metamorphosis in X. laevis at concentrations of 10 and 15 mg/L. Moreover, MBP seemed to possess stronger activity. The effects of DBP and MBP on inducing changes of expression of selected thyroid hormone response genes: thyroid hormone receptor-beta (TRβ), retinoid X receptor gamma (RXRγ), alpha and beta subunits of thyroid-stimulating hormone (TSHα and TSHβ) were detected by qPCR at all concentrations of the compounds. Using mammalian two-hybrid assay in vitro, we found that DBP and MBP enhanced the interactions between co-repressor SMRT (silencing mediator for retinoid and thyroid hormone receptors) and TR in a dose-dependent manner, and MBP displayed more markedly. In addition, MBP at low concentrations (2 and 10 mg/L) caused aberrant methylation of TRβ in head tissue. CONCLUSIONS: The current findings highlight potential disruption of thyroid signalling by DBP and MBP and provide data for human risk assessment

    Formation mechanism and control of flaring in forward tube spinning

    Get PDF
    Forward tube spinning (or flow forming) is usually employed to produce cylindrically tubular components to meet the increasing requirements for manufacturing high-performance and light-weight products at low cost and short lead-time. In forward tube spinning, flaring defect may easily occur at the opening end of tubes, which would deteriorate the quality of the spun tubular parts and reduce the material utilization. In addition, an additional operation is needed to trim away the flared end of the spun tabular parts. Efficient control of flaring formation is thus a non-trivial issue in forward tube spinning process and thus become one of the critical bottleneck issues to be addressed in this unique forming process. In this study, the formation mechanism of flaring was systematically studied via finite element (FE) simulation and an in-depth understanding was thus established, which forms basis for control of flaring forming in forward tube spinning. Based on the simulated material flow behaviour, it is found that flaring is formed by the material in non-spun zone flowing away from the mandrel. This material flow behaviour is caused by the pile up and the decreasing stiffness of the non-spun zone. In addition, the effects of process parameters on flaring were investigated to reduce flaring. The results show that the smaller feed rate and thickness reduction per pass can reduce the maximum flaring to a certain extent, but is very limited. To increase productivity and shorten forming lead-time, an efficient method to control flaring was proposed using a pressing ring in front of the roller based on the formation mechanism of flaring. FE simulation was further used to study the feasibility and demonstrates the validity of the method in terms of reducing and even eliminating the flaring with a short production lead-time. Finally, the forward tube spinning experiments were carried out to validate the formation mechanism of flaring and the method to avoid or eliminate the flaring formation in forward tube spinning

    Determination of the number of J/ψ events with J/ψ → inclusive decays

    Get PDF
    postprin

    Two-photon widths of the χ c0,2 states and helicity analysis for χ c2→γγ

    Get PDF
    Based on a data sample of 106×106 ψ ′ events collected with the BESIII detector, the decays ψ ′→γχ c0,2, χ c0,2→γγ are studied to determine the two-photon widths of the χ c0,2 states. The two-photon decay branching fractions are determined to be B(χ c0→γγ)=(2. 24±0.19±0.12±0.08)×10 -4 and B(χ c2→γγ)=(3.21±0.18±0. 17±0.13)×10 -4. From these, the two-photon widths are determined to be Γ γγ(χ c0)=(2. 33±0.20±0.13±0.17)keV, Γ γγ(χ c2)=(0.63±0.04±0. 04±0.04)keV, and R=Γ γγ(χ c2)/ Γ γγ(χ c0)=0.271±0. 029±0.013±0.027, where the uncertainties are statistical, systematic, and those from the PDG B(ψ ′→γχ c0,2) and Γ(χ c0,2) errors, respectively. The ratio of the two-photon widths for helicity λ=0 and helicity λ=2 components in the decay χ c2→γγ is measured for the first time to be f 0/2=Γγγλ= 0(χ c2)/Γγγλ=2(χ c2)=0. 00±0.02±0.02. © 2012 American Physical Society.published_or_final_versio

    Stochastic modelling of air pollution impacts on respiratory infection risk

    Get PDF
    The impact of air pollution on people’s health and daily activities in China has recently aroused much attention. By using stochastic differential equations, variation in a 6 year long time series of air quality index (AQI) data, gathered from air quality monitoring sites in Xi’an from 15 November 2010 to 14 November 2016 was studied. Every year the extent of air pollution shifts from being serious to not so serious due to alterations in heat production systems. The distribution of such changes can be predicted by a Bayesian approach and the Gibbs sampler algorithm. The intervals between changes in a sequence indicate when the air pollution becomes increasingly serious. Also, the inflow rate of pollutants during the main pollution periods each year has an increasing trend. This study used a stochastic SEIS model associated with the AQI to explore the impact of air pollution on respiratory infections. Good fits to both the AQI data and the numbers of influenza-like illness cases were obtained by stochastic numerical simulation of the model. Based on the model’s dynamics, the AQI time series and the daily number of respiratory infection cases under various government intervention measures and human protection strategies were forecasted. The AQI data in the last 15 months verified that government interventions on vehicles are effective in controlling air pollution, thus providing numerical support for policy formulation to address the haze crisis

    Search for a light exotic particle in J/psi radiative decays

    Get PDF
    Using a data sample containing 1.06x10^8 psi' events collected with the BESIII detector at the BEPCII electron-positron collider, we search for a light exotic particle X in the process psi' -> pi^+ pi^- J/psi, J/psi -> gamma X, X -> mu^+ mu^-. This light particle X could be a Higgs-like boson A^0, a spin-1 U boson, or a pseudoscalar sgoldstino particle. In this analysis, we find no evidence for any mu^+mu^- mass peak between the mass threshold and 3.0 GeV/c^2. We set 90%-confidence-level upper limits on the product-branching fractions for J/psi -> gamma A^0, A^0 -> mu^+ mu^- which range from 4x10^{-7} to 2.1x10^{-5}, depending on the mass of A^0, for M(A^0)<3.0 GeV/c^2. Only one event is seen in the mass region below 255 MeV/c^2 and this has a mu^+mu^- mass of 213.3 MeV/c^2 and the product branching fraction upper limit 5x10^{-7}.Comment: 7 pages, 3 figures, submitted to Physical Review

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore